常用英语词汇-andrew Ng课程
- [1 ] intensity 强度
- [2 ] Regression 回归
- [3 ] Loss function 损失函数
- [4 ] non-convex 非凸函数
- [5 ] neural network 神经网络
- [ ] supervised learning 监督学习
- [ ] regression problem 回归问题处理的是连续的问题
- [ ] classification problem 分类问题处理的问题是离散的而不是连续的
回归问题和分类问题的区别应该在于 回归问题的结果是连续的,分类问题的结果是离散的。 - [ ] discreet value 离散值
- [ ] support vector machines 支持向量机,用来处理分类算法中输入的维度不单一的情况(甚至输入维度为无穷)
- [ ] learning theory 学习理论
- [ ] learning algorithms 学习算法
- [ ] unsupervised learning 无监督学习
- [ ] gradient descent 梯度下降
- [ ] linear regression 线性回归
- [ ] Neural Network 神经网络
- [ ] gradient descent 梯度下降 监督学习的一种算法,用来拟合的算法
- [ ] normal equations
- [ ] linear algebra 线性代数 原谅我英语不太好
- [ ] superscript上标
- [ ] exponentiation 指数
- [ ] training set 训练集合
- [ ] training example 训练样本
- [ ] hypothesis 假设,用来表示学习算法的输出,叫我们不要太纠结H的意思,因为这只是历史的惯例
- [ ] LMS algorithm “least mean squares” 最小二乘法算法
- [ ] batch gradient descent 批量梯度下降,因为每次都会计算 最小拟合的方差,所以运算慢
- [ ] constantly gradient descent 字幕组翻译成“随机梯度下降” 我怎么觉得是“常量梯度下降”也就是梯度下降的运算次数不变,一般比批量梯度下降速度快,但是通常不是那么准确
- [ ] iterative algorithm 迭代算法
- [ ] partial derivative 偏导数
- [ ] contour 等高线
- [ ] quadratic function 二元函数
- [ ] locally weighted regression局部加权回归
- [ ] underfitting欠拟合
- [ ] overfitting 过拟合
- [ ] non-parametric learning algorithms 无参数学习算法
- [ ] parametric learning algorithm 参数学习算法
[ ] other
[ ] activation 激活值
- [ ] activation function 激活函数
- [ ] additive noise 加性噪声
- [ ] autoencoder 自编码器
- [ ] Autoencoders 自编码算法
- [ ] average firing rate 平均激活率
- [ ] average sum-of-squares error 均方差
- [ ] backpropagation 后向传播
- [ ] basis 基
- [ ] basis feature vectors 特征基向量
- [50 ] batch gradient ascent 批量梯度上升法
- [ ] Bayesian regularization method 贝叶斯规则化方法
- [ ] Bernoulli random variable 伯努利随机变量
- [ ] bias term 偏置项
- [ ] binary classfication 二元分类
- [ ] class labels 类型标记
- [ ] concatenation 级联
- [ ] conjugate gradient 共轭梯度
- [ ] contiguous groups 联通区域
- [ ] convex optimization software 凸优化软件
- [ ] convolution 卷积
- [ ] cost function 代价函数
- [ ] covariance matrix 协方差矩阵
- [ ] DC component 直流分量
- [ ] decorrelation 去相关
- [ ] degeneracy 退化
- [ ] demensionality reduction 降维
- [ ] derivative 导函数
- [ ] diagonal 对角线
- [ ] diffusion of gradients 梯度的弥散
- [ ] eigenvalue 特征值
- [ ] eigenvector 特征向量
- [ ] error term 残差
- [ ] feature matrix 特征矩阵
- [ ] feature standardization 特征标准化
- [ ] feedforward architectures 前馈结构算法
- [ ] feedforward neural network 前馈神经网络
- [ ] feedforward pass 前馈传导
- [ ] fine-tuned 微调
- [ ] first-order feature 一阶特征
- [ ] forward pass 前向传导
- [ ] forward propagation 前向传播
- [ ] Gaussian prior 高斯先验概率
- [ ] generative model 生成模型
- [ ] gradient descent 梯度下降
- [ ] Greedy layer-wise training 逐层贪婪训练方法
- [ ] grouping matrix 分组矩阵
- [ ] Hadamard product 阿达马乘积
- [ ] Hessian matrix Hessian 矩阵
- [ ] hidden layer 隐含层
- [ ] hidden units 隐藏神经元
- [ ] Hierarchical grouping 层次型分组
- [ ] higher-order features 更高阶特征
- [ ] highly non-convex optimization problem 高度非凸的优化问题
- [ ] histogram 直方图
- [ ] hyperbolic tangent 双曲正切函数
- [ ] hypothesis 估值,假设
- [ ] identity activation function 恒等激励函数
- [ ] IID 独立同分布
- [ ] illumination 照明
- [100 ] inactive 抑制
- [ ] independent component analysis 独立成份分析
- [ ] input domains 输入域
- [ ] input layer 输入层
- [ ] intensity 亮度/灰度
- [ ] intercept term 截距
- [ ] KL divergence 相对熵
- [ ] KL divergence KL分散度
- [ ] k-Means K-均值
- [ ] learning rate 学习速率
- [ ] least squares 最小二乘法
- [ ] linear correspondence 线性响应
- [ ] linear superposition 线性叠加
- [ ] line-search algorithm 线搜索算法
- [ ] local mean subtraction 局部均值消减
- [ ] local optima 局部最优解
- [ ] logistic regression 逻辑回归
- [ ] loss function 损失函数
- [ ] low-pass filtering 低通滤波
- [ ] magnitude 幅值
- [ ] MAP 极大后验估计
- [ ] maximum likelihood estimation 极大似然估计
- [ ] mean 平均值
- [ ] MFCC Mel 倒频系数
- [ ] multi-class classification 多元分类
- [ ] neural networks 神经网络
- [ ] neuron 神经元
- [ ] Newton’s method 牛顿法
- [ ] non-convex function 非凸函数
- [ ] non-linear feature 非线性特征
- [ ] norm 范式
- [ ] norm bounded 有界范数
- [ ] norm constrained 范数约束
- [ ] normalization 归一化
- [ ] numerical roundoff errors 数值舍入误差
- [ ] numerically checking 数值检验
- [ ] numerically reliable 数值计算上稳定
- [ ] object detection 物体检测
- [ ] objective function 目标函数
- [ ] off-by-one error 缺位错误
- [ ] orthogonalization 正交化
- [ ] output layer 输出层
- [ ] overall cost function 总体代价函数
- [ ] over-complete basis 超完备基
- [ ] over-fitting 过拟合
- [ ] parts of objects 目标的部件
- [ ] part-whole decompostion 部分-整体分解
- [ ] PCA 主元分析
- [ ] penalty term 惩罚因子
- [ ] per-example mean subtraction 逐样本均值消减
- [150 ] pooling 池化
- [ ] pretrain 预训练
- [ ] principal components analysis 主成份分析
- [ ] quadratic constraints 二次约束
- [ ] RBMs 受限Boltzman机
- [ ] reconstruction based models 基于重构的模型
- [ ] reconstruction cost 重建代价
- [ ] reconstruction term 重构项
- [ ] redundant 冗余
- [ ] reflection matrix 反射矩阵
- [ ] regularization 正则化
- [ ] regularization term 正则化项
- [ ] rescaling 缩放
- [ ] robust 鲁棒性
- [ ] run 行程
- [ ] second-order feature 二阶特征
- [ ] sigmoid activation function S型激励函数
- [ ] significant digits 有效数字
- [ ] singular value 奇异值
- [ ] singular vector 奇异向量
- [ ] smoothed L1 penalty 平滑的L1范数惩罚
- [ ] Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏惩罚函数
- [ ] smoothing 平滑
- [ ] Softmax Regresson Softmax回归
- [ ] sorted in decreasing order 降序排列
- [ ] source features 源特征
- [ ] sparse autoencoder 消减归一化
- [ ] Sparsity 稀疏性
- [ ] sparsity parameter 稀疏性参数
- [ ] sparsity penalty 稀疏惩罚
- [ ] square function 平方函数
- [ ] squared-error 方差
- [ ] stationary 平稳性(不变性)
- [ ] stationary stochastic process 平稳随机过程
- [ ] step-size 步长值
- [ ] supervised learning 监督学习
- [ ] symmetric positive semi-definite matrix 对称半正定矩阵
- [ ] symmetry breaking 对称失效
- [ ] tanh function 双曲正切函数
- [ ] the average activation 平均活跃度
- [ ] the derivative checking method 梯度验证方法
- [ ] the empirical distribution 经验分布函数
- [ ] the energy function 能量函数
- [ ] the Lagrange dual 拉格朗日对偶函数
- [ ] the log likelihood 对数似然函数
- [ ] the pixel intensity value 像素灰度值
- [ ] the rate of convergence 收敛速度
- [ ] topographic cost term 拓扑代价项
- [ ] topographic ordered 拓扑秩序
- [ ] transformation 变换
- [200 ] translation invariant 平移不变性
- [ ] trivial answer 平凡解
- [ ] under-complete basis 不完备基
- [ ] unrolling 组合扩展
- [ ] unsupervised learning 无监督学习
- [ ] variance 方差
- [ ] vecotrized implementation 向量化实现
- [ ] vectorization 矢量化
- [ ] visual cortex 视觉皮层
- [ ] weight decay 权重衰减
- [ ] weighted average 加权平均值
- [ ] whitening 白化
[ ] zero-mean 均值为零
[ ] Letter A
[ ] Accumulated error backpropagation 累积误差逆传播
- [ ] Activation Function 激活函数
- [ ] Adaptive Resonance Theory/ART 自适应谐振理论
- [ ] Addictive model 加性学习
- [ ] Adversarial Networks 对抗网络
- [ ] Affine Layer 仿射层
- [ ] Affinity matrix 亲和矩阵
- [ ] Agent 代理 / 智能体
- [ ] Algorithm 算法
- [ ] Alpha-beta pruning α-β剪枝
- [ ] Anomaly detection 异常检测
- [ ] Approximation 近似
- [ ] Area Under ROC Curve/AUC Roc 曲线下面积
- [ ] Artificial General Intelligence/AGI 通用人工智能
- [ ] Artificial Intelligence/AI 人工智能
- [ ] Association analysis 关联分析
- [ ] Attention mechanism 注意力机制
- [ ] Attribute conditional independence assumption 属性条件独立性假设
- [ ] Attribute space 属性空间
- [ ] Attribute value 属性值
- [ ] Autoencoder 自编码器
- [ ] Automatic speech recognition 自动语音识别
- [ ] Automatic summarization 自动摘要
- [ ] Average gradient 平均梯度
[ ] Average-Pooling 平均池化
[ ] Letter B
[ ] Backpropagation Through Time 通过时间的反向传播
- [ ] Backpropagation/BP 反向传播
- [ ] Base learner 基学习器
- [ ] Base learning algorithm 基学习算法
- [ ] Batch Normalization/BN 批量归一化
- [ ] Bayes decision rule 贝叶斯判定准则
- [250 ] Bayes Model Averaging/BMA 贝叶斯模型平均
- [ ] Bayes optimal classifier 贝叶斯最优分类器
- [ ] Bayesian decision theory 贝叶斯决策论
- [ ] Bayesian network 贝叶斯网络
- [ ] Between-class scatter matrix 类间散度矩阵
- [ ] Bias 偏置 / 偏差
- [ ] Bias-variance decomposition 偏差-方差分解
- [ ] Bias-Variance Dilemma 偏差 – 方差困境
- [ ] Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆
- [ ] Binary classification 二分类
- [ ] Binomial test 二项检验
- [ ] Bi-partition 二分法
- [ ] Boltzmann machine 玻尔兹曼机
- [ ] Bootstrap sampling 自助采样法/可重复采样/有放回采样
- [ ] Bootstrapping 自助法
[ ] Break-Event Point/BEP 平衡点
[ ] Letter C
[ ] Calibration 校准
- [ ] Cascade-Correlation 级联相关
- [ ] Categorical attribute 离散属性
- [ ] Class-conditional probability 类条件概率
- [ ] Classification and regression tree/CART 分类与回归树
- [ ] Classifier 分类器
- [ ] Class-imbalance 类别不平衡
- [ ] Closed -form 闭式
- [ ] Cluster 簇/类/集群
- [ ] Cluster analysis 聚类分析
- [ ] Clustering 聚类
- [ ] Clustering ensemble 聚类集成
- [ ] Co-adapting 共适应
- [ ] Coding matrix 编码矩阵
- [ ] COLT 国际学习理论会议
- [ ] Committee-based learning 基于委员会的学习
- [ ] Competitive learning 竞争型学习
- [ ] Component learner 组件学习器
- [ ] Comprehensibility 可解释性
- [ ] Computation Cost 计算成本
- [ ] Computational Linguistics 计算语言学
- [ ] Computer vision 计算机视觉
- [ ] Concept drift 概念漂移
- [ ] Concept Learning System /CLS 概念学习系统
- [ ] Conditional entropy 条件熵
- [ ] Conditional mutual information 条件互信息
- [ ] Conditional Probability Table/CPT 条件概率表
- [ ] Conditional random field/CRF 条件随机场
- [ ] Conditional risk 条件风险
- [ ] Confidence 置信度
- [ ] Confusion matrix 混淆矩阵
- [300 ] Connection weight 连接权
- [ ] Connectionism 连结主义
- [ ] Consistency 一致性/相合性
- [ ] Contingency table 列联表
- [ ] Continuous attribute 连续属性
- [ ] Convergence 收敛
- [ ] Conversational agent 会话智能体
- [ ] Convex quadratic programming 凸二次规划
- [ ] Convexity 凸性
- [ ] Convolutional neural network/CNN 卷积神经网络
- [ ] Co-occurrence 同现
- [ ] Correlation coefficient 相关系数
- [ ] Cosine similarity 余弦相似度
- [ ] Cost curve 成本曲线
- [ ] Cost Function 成本函数
- [ ] Cost matrix 成本矩阵
- [ ] Cost-sensitive 成本敏感
- [ ] Cross entropy 交叉熵
- [ ] Cross validation 交叉验证
- [ ] Crowdsourcing 众包
- [ ] Curse of dimensionality 维数灾难
- [ ] Cut point 截断点
[ ] Cutting plane algorithm 割平面法
[ ] Letter D
[ ] Data mining 数据挖掘
- [ ] Data set 数据集
- [ ] Decision Boundary 决策边界
- [ ] Decision stump 决策树桩
- [ ] Decision tree 决策树/判定树
- [ ] Deduction 演绎
- [ ] Deep Belief Network 深度信念网络
- [ ] Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积生成对抗网络
- [ ] Deep learning 深度学习
- [ ] Deep neural network/DNN 深度神经网络
- [ ] Deep Q-Learning 深度 Q 学习
- [ ] Deep Q-Network 深度 Q 网络
- [ ] Density estimation 密度估计
- [ ] Density-based clustering 密度聚类
- [ ] Differentiable neural computer 可微分神经计算机
- [ ] Dimensionality reduction algorithm 降维算法
- [ ] Directed edge 有向边
- [ ] Disagreement measure 不合度量
- [ ] Discriminative model 判别模型
- [ ] Discriminator 判别器
- [ ] Distance measure 距离度量
- [ ] Distance metric learning 距离度量学习
- [ ] Distribution 分布
- [ ] Divergence 散度
- [350 ] Diversity measure 多样性度量/差异性度量
- [ ] Domain adaption 领域自适应
- [ ] Downsampling 下采样
- [ ] D-separation (Directed separation) 有向分离
- [ ] Dual problem 对偶问题
- [ ] Dummy node 哑结点
- [ ] Dynamic Fusion 动态融合
[ ] Dynamic programming 动态规划
[ ] Letter E
[ ] Eigenvalue decomposition 特征值分解
- [ ] Embedding 嵌入
- [ ] Emotional analysis 情绪分析
- [ ] Empirical conditional entropy 经验条件熵
- [ ] Empirical entropy 经验熵
- [ ] Empirical error 经验误差
- [ ] Empirical risk 经验风险
- [ ] End-to-End 端到端
- [ ] Energy-based model 基于能量的模型
- [ ] Ensemble learning 集成学习
- [ ] Ensemble pruning 集成修剪
- [ ] Error Correcting Output Codes/ECOC 纠错输出码
- [ ] Error rate 错误率
- [ ] Error-ambiguity decomposition 误差-分歧分解
- [ ] Euclidean distance 欧氏距离
- [ ] Evolutionary computation 演化计算
- [ ] Expectation-Maximization 期望最大化
- [ ] Expected loss 期望损失
- [ ] Exploding Gradient Problem 梯度爆炸问题
- [ ] Exponential loss function 指数损失函数
[ ] Extreme Learning Machine/ELM 超限学习机
[ ] Letter F
[ ] Factorization 因子分解
- [ ] False negative 假负类
- [ ] False positive 假正类
- [ ] False Positive Rate/FPR 假正例率
- [ ] Feature engineering 特征工程
- [ ] Feature selection 特征选择
- [ ] Feature vector 特征向量
- [ ] Featured Learning 特征学习
- [ ] Feedforward Neural Networks/FNN 前馈神经网络
- [ ] Fine-tuning 微调
- [ ] Flipping output 翻转法
- [ ] Fluctuation 震荡
- [ ] Forward stagewise algorithm 前向分步算法
- [ ] Frequentist 频率主义学派
- [ ] Full-rank matrix 满秩矩阵
[400 ] Functional neuron 功能神经元
[ ] Letter G
[ ] Gain ratio 增益率
- [ ] Game theory 博弈论
- [ ] Gaussian kernel function 高斯核函数
- [ ] Gaussian Mixture Model 高斯混合模型
- [ ] General Problem Solving 通用问题求解
- [ ] Generalization 泛化
- [ ] Generalization error 泛化误差
- [ ] Generalization error bound 泛化误差上界
- [ ] Generalized Lagrange function 广义拉格朗日函数
- [ ] Generalized linear model 广义线性模型
- [ ] Generalized Rayleigh quotient 广义瑞利商
- [ ] Generative Adversarial Networks/GAN 生成对抗网络
- [ ] Generative Model 生成模型
- [ ] Generator 生成器
- [ ] Genetic Algorithm/GA 遗传算法
- [ ] Gibbs sampling 吉布斯采样
- [ ] Gini index 基尼指数
- [ ] Global minimum 全局最小
- [ ] Global Optimization 全局优化
- [ ] Gradient boosting 梯度提升
- [ ] Gradient Descent 梯度下降
- [ ] Graph theory 图论
[ ] Ground-truth 真相/真实
[ ] Letter H
[ ] Hard margin 硬间隔
- [ ] Hard voting 硬投票
- [ ] Harmonic mean 调和平均
- [ ] Hesse matrix 海塞矩阵
- [ ] Hidden dynamic model 隐动态模型
- [ ] Hidden layer 隐藏层
- [ ] Hidden Markov Model/HMM 隐马尔可夫模型
- [ ] Hierarchical clustering 层次聚类
- [ ] Hilbert space 希尔伯特空间
- [ ] Hinge loss function 合页损失函数
- [ ] Hold-out 留出法
- [ ] Homogeneous 同质
- [ ] Hybrid computing 混合计算
- [ ] Hyperparameter 超参数
- [ ] Hypothesis 假设
[ ] Hypothesis test 假设验证
[ ] Letter I
[ ] ICML 国际机器学习会议
- [450 ] Improved iterative scaling/IIS 改进的迭代尺度法
- [ ] Incremental learning 增量学习
- [ ] Independent and identically distributed/i.i.d. 独立同分布
- [ ] Independent Component Analysis/ICA 独立成分分析
- [ ] Indicator function 指示函数
- [ ] Individual learner 个体学习器
- [ ] Induction 归纳
- [ ] Inductive bias 归纳偏好
- [ ] Inductive learning 归纳学习
- [ ] Inductive Logic Programming/ILP 归纳逻辑程序设计
- [ ] Information entropy 信息熵
- [ ] Information gain 信息增益
- [ ] Input layer 输入层
- [ ] Insensitive loss 不敏感损失
- [ ] Inter-cluster similarity 簇间相似度
- [ ] International Conference for Machine Learning/ICML 国际机器学习大会
- [ ] Intra-cluster similarity 簇内相似度
- [ ] Intrinsic value 固有值
- [ ] Isometric Mapping/Isomap 等度量映射
- [ ] Isotonic regression 等分回归
[ ] Iterative Dichotomiser 迭代二分器
[ ] Letter K
[ ] Kernel method 核方法
- [ ] Kernel trick 核技巧
- [ ] Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析
- [ ] K-fold cross validation k 折交叉验证/k 倍交叉验证
- [ ] K-Means Clustering K – 均值聚类
- [ ] K-Nearest Neighbours Algorithm/KNN K近邻算法
- [ ] Knowledge base 知识库
[ ] Knowledge Representation 知识表征
[ ] Letter L
[ ] Label space 标记空间
- [ ] Lagrange duality 拉格朗日对偶性
- [ ] Lagrange multiplier 拉格朗日乘子
- [ ] Laplace smoothing 拉普拉斯平滑
- [ ] Laplacian correction 拉普拉斯修正
- [ ] Latent Dirichlet Allocation 隐狄利克雷分布
- [ ] Latent semantic analysis 潜在语义分析
- [ ] Latent variable 隐变量
- [ ] Lazy learning 懒惰学习
- [ ] Learner 学习器
- [ ] Learning by analogy 类比学习
- [ ] Learning rate 学习率
- [ ] Learning Vector Quantization/LVQ 学习向量量化
- [ ] Least squares regression tree 最小二乘回归树
- [ ] Leave-One-Out/LOO 留一法
- [500 ] linear chain conditional random field 线性链条件随机场
- [ ] Linear Discriminant Analysis/LDA 线性判别分析
- [ ] Linear model 线性模型
- [ ] Linear Regression 线性回归
- [ ] Link function 联系函数
- [ ] Local Markov property 局部马尔可夫性
- [ ] Local minimum 局部最小
- [ ] Log likelihood 对数似然
- [ ] Log odds/logit 对数几率
- [ ] Logistic Regression Logistic 回归
- [ ] Log-likelihood 对数似然
- [ ] Log-linear regression 对数线性回归
- [ ] Long-Short Term Memory/LSTM 长短期记忆
[ ] Loss function 损失函数
[ ] Letter M
[ ] Machine translation/MT 机器翻译
- [ ] Macron-P 宏查准率
- [ ] Macron-R 宏查全率
- [ ] Majority voting 绝对多数投票法
- [ ] Manifold assumption 流形假设
- [ ] Manifold learning 流形学习
- [ ] Margin theory 间隔理论
- [ ] Marginal distribution 边际分布
- [ ] Marginal independence 边际独立性
- [ ] Marginalization 边际化
- [ ] Markov Chain Monte Carlo/MCMC 马尔可夫链蒙特卡罗方法
- [ ] Markov Random Field 马尔可夫随机场
- [ ] Maximal clique 最大团
- [ ] Maximum Likelihood Estimation/MLE 极大似然估计/极大似然法
- [ ] Maximum margin 最大间隔
- [ ] Maximum weighted spanning tree 最大带权生成树
- [ ] Max-Pooling 最大池化
- [ ] Mean squared error 均方误差
- [ ] Meta-learner 元学习器
- [ ] Metric learning 度量学习
- [ ] Micro-P 微查准率
- [ ] Micro-R 微查全率
- [ ] Minimal Description Length/MDL 最小描述长度
- [ ] Minimax game 极小极大博弈
- [ ] Misclassification cost 误分类成本
- [ ] Mixture of experts 混合专家
- [ ] Momentum 动量
- [ ] Moral graph 道德图/端正图
- [ ] Multi-class classification 多分类
- [ ] Multi-document summarization 多文档摘要
- [ ] Multi-layer feedforward neural networks 多层前馈神经网络
- [ ] Multilayer Perceptron/MLP 多层感知器
- [ ] Multimodal learning 多模态学习
- [550 ] Multiple Dimensional Scaling 多维缩放
- [ ] Multiple linear regression 多元线性回归
- [ ] Multi-response Linear Regression /MLR 多响应线性回归
[ ] Mutual information 互信息
[ ] Letter N
[ ] Naive bayes 朴素贝叶斯
- [ ] Naive Bayes Classifier 朴素贝叶斯分类器
- [ ] Named entity recognition 命名实体识别
- [ ] Nash equilibrium 纳什均衡
- [ ] Natural language generation/NLG 自然语言生成
- [ ] Natural language processing 自然语言处理
- [ ] Negative class 负类
- [ ] Negative correlation 负相关法
- [ ] Negative Log Likelihood 负对数似然
- [ ] Neighbourhood Component Analysis/NCA 近邻成分分析
- [ ] Neural Machine Translation 神经机器翻译
- [ ] Neural Turing Machine 神经图灵机
- [ ] Newton method 牛顿法
- [ ] NIPS 国际神经信息处理系统会议
- [ ] No Free Lunch Theorem/NFL 没有免费的午餐定理
- [ ] Noise-contrastive estimation 噪音对比估计
- [ ] Nominal attribute 列名属性
- [ ] Non-convex optimization 非凸优化
- [ ] Nonlinear model 非线性模型
- [ ] Non-metric distance 非度量距离
- [ ] Non-negative matrix factorization 非负矩阵分解
- [ ] Non-ordinal attribute 无序属性
- [ ] Non-Saturating Game 非饱和博弈
- [ ] Norm 范数
- [ ] Normalization 归一化
- [ ] Nuclear norm 核范数
[ ] Numerical attribute 数值属性
[ ] Letter O
[ ] Objective function 目标函数
- [ ] Oblique decision tree 斜决策树
- [ ] Occam’s razor 奥卡姆剃刀
- [ ] Odds 几率
- [ ] Off-Policy 离策略
- [ ] One shot learning 一次性学习
- [ ] One-Dependent Estimator/ODE 独依赖估计
- [ ] On-Policy 在策略
- [ ] Ordinal attribute 有序属性
- [ ] Out-of-bag estimate 包外估计
- [ ] Output layer 输出层
- [ ] Output smearing 输出调制法
- [ ] Overfitting 过拟合/过配
[600 ] Oversampling 过采样
[ ] Letter P
[ ] Paired t-test 成对 t 检验
- [ ] Pairwise 成对型
- [ ] Pairwise Markov property 成对马尔可夫性
- [ ] Parameter 参数
- [ ] Parameter estimation 参数估计
- [ ] Parameter tuning 调参
- [ ] Parse tree 解析树
- [ ] Particle Swarm Optimization/PSO 粒子群优化算法
- [ ] Part-of-speech tagging 词性标注
- [ ] Perceptron 感知机
- [ ] Performance measure 性能度量
- [ ] Plug and Play Generative Network 即插即用生成网络
- [ ] Plurality voting 相对多数投票法
- [ ] Polarity detection 极性检测
- [ ] Polynomial kernel function 多项式核函数
- [ ] Pooling 池化
- [ ] Positive class 正类
- [ ] Positive definite matrix 正定矩阵
- [ ] Post-hoc test 后续检验
- [ ] Post-pruning 后剪枝
- [ ] potential function 势函数
- [ ] Precision 查准率/准确率
- [ ] Prepruning 预剪枝
- [ ] Principal component analysis/PCA 主成分分析
- [ ] Principle of multiple explanations 多释原则
- [ ] Prior 先验
- [ ] Probability Graphical Model 概率图模型
- [ ] Proximal Gradient Descent/PGD 近端梯度下降
- [ ] Pruning 剪枝
[ ] Pseudo-label 伪标记
[ ] Letter Q
[ ] Quantized Neural Network 量子化神经网络
- [ ] Quantum computer 量子计算机
- [ ] Quantum Computing 量子计算
[ ] Quasi Newton method 拟牛顿法
[ ] Letter R
[ ] Radial Basis Function/RBF 径向基函数
- [ ] Random Forest Algorithm 随机森林算法
- [ ] Random walk 随机漫步
- [ ] Recall 查全率/召回率
- [ ] Receiver Operating Characteristic/ROC 受试者工作特征
- [ ] Rectified Linear Unit/ReLU 线性修正单元
- [650 ] Recurrent Neural Network 循环神经网络
- [ ] Recursive neural network 递归神经网络
- [ ] Reference model 参考模型
- [ ] Regression 回归
- [ ] Regularization 正则化
- [ ] Reinforcement learning/RL 强化学习
- [ ] Representation learning 表征学习
- [ ] Representer theorem 表示定理
- [ ] reproducing kernel Hilbert space/RKHS 再生核希尔伯特空间
- [ ] Re-sampling 重采样法
- [ ] Rescaling 再缩放
- [ ] Residual Mapping 残差映射
- [ ] Residual Network 残差网络
- [ ] Restricted Boltzmann Machine/RBM 受限玻尔兹曼机
- [ ] Restricted Isometry Property/RIP 限定等距性
- [ ] Re-weighting 重赋权法
- [ ] Robustness 稳健性/鲁棒性
- [ ] Root node 根结点
- [ ] Rule Engine 规则引擎
[ ] Rule learning 规则学习
[ ] Letter S
[ ] Saddle point 鞍点
- [ ] Sample space 样本空间
- [ ] Sampling 采样
- [ ] Score function 评分函数
- [ ] Self-Driving 自动驾驶
- [ ] Self-Organizing Map/SOM 自组织映射
- [ ] Semi-naive Bayes classifiers 半朴素贝叶斯分类器
- [ ] Semi-Supervised Learning 半监督学习
- [ ] semi-Supervised Support Vector Machine 半监督支持向量机
- [ ] Sentiment analysis 情感分析
- [ ] Separating hyperplane 分离超平面
- [ ] Sigmoid function Sigmoid 函数
- [ ] Similarity measure 相似度度量
- [ ] Simulated annealing 模拟退火
- [ ] Simultaneous localization and mapping 同步定位与地图构建
- [ ] Singular Value Decomposition 奇异值分解
- [ ] Slack variables 松弛变量
- [ ] Smoothing 平滑
- [ ] Soft margin 软间隔
- [ ] Soft margin maximization 软间隔最大化
- [ ] Soft voting 软投票
- [ ] Sparse representation 稀疏表征
- [ ] Sparsity 稀疏性
- [ ] Specialization 特化
- [ ] Spectral Clustering 谱聚类
- [ ] Speech Recognition 语音识别
- [ ] Splitting variable 切分变量
- [700 ] Squashing function 挤压函数
- [ ] Stability-plasticity dilemma 可塑性-稳定性困境
- [ ] Statistical learning 统计学习
- [ ] Status feature function 状态特征函
- [ ] Stochastic gradient descent 随机梯度下降
- [ ] Stratified sampling 分层采样
- [ ] Structural risk 结构风险
- [ ] Structural risk minimization/SRM 结构风险最小化
- [ ] Subspace 子空间
- [ ] Supervised learning 监督学习/有导师学习
- [ ] support vector expansion 支持向量展式
- [ ] Support Vector Machine/SVM 支持向量机
- [ ] Surrogat loss 替代损失
- [ ] Surrogate function 替代函数
- [ ] Symbolic learning 符号学习
- [ ] Symbolism 符号主义
[ ] Synset 同义词集
[ ] Letter T
[ ] T-Distribution Stochastic Neighbour Embedding/t-SNE T – 分布随机近邻嵌入
- [ ] Tensor 张量
- [ ] Tensor Processing Units/TPU 张量处理单元
- [ ] The least square method 最小二乘法
- [ ] Threshold 阈值
- [ ] Threshold logic unit 阈值逻辑单元
- [ ] Threshold-moving 阈值移动
- [ ] Time Step 时间步骤
- [ ] Tokenization 标记化
- [ ] Training error 训练误差
- [ ] Training instance 训练示例/训练例
- [ ] Transductive learning 直推学习
- [ ] Transfer learning 迁移学习
- [ ] Treebank 树库
- [ ] Tria-by-error 试错法
- [ ] True negative 真负类
- [ ] True positive 真正类
- [ ] True Positive Rate/TPR 真正例率
- [ ] Turing Machine 图灵机
[ ] Twice-learning 二次学习
[ ] Letter U
[ ] Underfitting 欠拟合/欠配
- [ ] Undersampling 欠采样
- [ ] Understandability 可理解性
- [ ] Unequal cost 非均等代价
- [ ] Unit-step function 单位阶跃函数
- [ ] Univariate decision tree 单变量决策树
- [ ] Unsupervised learning 无监督学习/无导师学习
- [ ] Unsupervised layer-wise training 无监督逐层训练
[ ] Upsampling 上采样
[ ] Letter V
[ ] Vanishing Gradient Problem 梯度消失问题
- [ ] Variational inference 变分推断
- [ ] VC Theory VC维理论
- [ ] Version space 版本空间
- [ ] Viterbi algorithm 维特比算法
[760 ] Von Neumann architecture 冯 · 诺伊曼架构
[ ] Letter W
[ ] Wasserstein GAN/WGAN Wasserstein生成对抗网络
- [ ] Weak learner 弱学习器
- [ ] Weight 权重
- [ ] Weight sharing 权共享
- [ ] Weighted voting 加权投票法
- [ ] Within-class scatter matrix 类内散度矩阵
- [ ] Word embedding 词嵌入
[ ] Word sense disambiguation 词义消歧
[ ] Letter Z
[ ] Zero-data learning 零数据学习
[ ] Zero-shot learning 零次学习
[ ] A
[ ] approximations近似值
- [ ] arbitrary随意的
- [ ] affine仿射的
- [ ] arbitrary任意的
- [ ] amino acid氨基酸
- [ ] amenable经得起检验的
- [ ] axiom公理,原则
- [ ] abstract提取
- [ ] architecture架构,体系结构;建造业
- [ ] absolute绝对的
- [ ] arsenal军火库
- [ ] assignment分配
- [ ] algebra线性代数
- [ ] asymptotically无症状的
[ ] appropriate恰当的
[ ] B
[ ] bias偏差
- [ ] brevity简短,简洁;短暂
- [800 ] broader广泛
- [ ] briefly简短的
[ ] batch批量
[ ] C
[ ] convergence 收敛,集中到一点
- [ ] convex凸的
- [ ] contours轮廓
- [ ] constraint约束
- [ ] constant常理
- [ ] commercial商务的
- [ ] complementarity补充
- [ ] coordinate ascent同等级上升
- [ ] clipping剪下物;剪报;修剪
- [ ] component分量;部件
- [ ] continuous连续的
- [ ] covariance协方差
- [ ] canonical正规的,正则的
- [ ] concave非凸的
- [ ] corresponds相符合;相当;通信
- [ ] corollary推论
- [ ] concrete具体的事物,实在的东西
- [ ] cross validation交叉验证
- [ ] correlation相互关系
- [ ] convention约定
- [ ] cluster一簇
- [ ] centroids 质心,形心
- [ ] converge收敛
- [ ] computationally计算(机)的
[ ] calculus计算
[ ] D
[ ] derive获得,取得
- [ ] dual二元的
- [ ] duality二元性;二象性;对偶性
- [ ] derivation求导;得到;起源
- [ ] denote预示,表示,是…的标志;意味着,[逻]指称
- [ ] divergence 散度;发散性
- [ ] dimension尺度,规格;维数
- [ ] dot小圆点
- [ ] distortion变形
- [ ] density概率密度函数
- [ ] discrete离散的
- [ ] discriminative有识别能力的
- [ ] diagonal对角
- [ ] dispersion分散,散开
- [ ] determinant决定因素
[849 ] disjoint不相交的
[ ] E
[ ] encounter遇到
- [ ] ellipses椭圆
- [ ] equality等式
- [ ] extra额外的
- [ ] empirical经验;观察
- [ ] ennmerate例举,计数
- [ ] exceed超过,越出
- [ ] expectation期望
- [ ] efficient生效的
- [ ] endow赋予
- [ ] explicitly清楚的
- [ ] exponential family指数家族
[ ] equivalently等价的
[ ] F
[ ] feasible可行的
- [ ] forary初次尝试
- [ ] finite有限的,限定的
- [ ] forgo摒弃,放弃
- [ ] fliter过滤
- [ ] frequentist最常发生的
- [ ] forward search前向式搜索
[ ] formalize使定形
[ ] G
[ ] generalized归纳的
- [ ] generalization概括,归纳;普遍化;判断(根据不足)
- [ ] guarantee保证;抵押品
- [ ] generate形成,产生
- [ ] geometric margins几何边界
- [ ] gap裂口
[ ] generative生产的;有生产力的
[ ] H
[ ] heuristic启发式的;启发法;启发程序
- [ ] hone怀恋;磨
[ ] hyperplane超平面
[ ] L
[ ] initial最初的
- [ ] implement执行
- [ ] intuitive凭直觉获知的
- [ ] incremental增加的
- [900 ] intercept截距
- [ ] intuitious直觉
- [ ] instantiation例子
- [ ] indicator指示物,指示器
- [ ] interative重复的,迭代的
- [ ] integral积分
- [ ] identical相等的;完全相同的
- [ ] indicate表示,指出
- [ ] invariance不变性,恒定性
- [ ] impose把…强加于
- [ ] intermediate中间的
[ ] interpretation解释,翻译
[ ] J
[ ] joint distribution联合概率
[ ] L
[ ] lieu替代
- [ ] logarithmic对数的,用对数表示的
- [ ] latent潜在的
[ ] Leave-one-out cross validation留一法交叉验证
[ ] M
[ ] magnitude巨大
- [ ] mapping绘图,制图;映射
- [ ] matrix矩阵
- [ ] mutual相互的,共同的
- [ ] monotonically单调的
- [ ] minor较小的,次要的
- [ ] multinomial多项的
[ ] multi-class classification二分类问题
[ ] N
[ ] nasty讨厌的
- [ ] notation标志,注释
[ ] naïve朴素的
[ ] O
[ ] obtain得到
- [ ] oscillate摆动
- [ ] optimization problem最优化问题
- [ ] objective function目标函数
- [ ] optimal最理想的
- [ ] orthogonal(矢量,矩阵等)正交的
- [ ] orientation方向
- [ ] ordinary普通的
[ ] occasionally偶然的
[ ] P
[ ] partial derivative偏导数
- [ ] property性质
- [ ] proportional成比例的
- [ ] primal原始的,最初的
- [ ] permit允许
- [ ] pseudocode伪代码
- [ ] permissible可允许的
- [ ] polynomial多项式
- [ ] preliminary预备
- [ ] precision精度
- [ ] perturbation 不安,扰乱
- [ ] poist假定,设想
- [ ] positive semi-definite半正定的
- [ ] parentheses圆括号
- [ ] posterior probability后验概率
- [ ] plementarity补充
- [ ] pictorially图像的
- [ ] parameterize确定…的参数
- [ ] poisson distribution柏松分布
[ ] pertinent相关的
[ ] Q
[ ] quadratic二次的
- [ ] quantity量,数量;分量
[ ] query疑问的
[ ] R
[ ] regularization使系统化;调整
- [ ] reoptimize重新优化
- [ ] restrict限制;限定;约束
- [ ] reminiscent回忆往事的;提醒的;使人联想…的(of)
- [ ] remark注意
- [ ] random variable随机变量
- [ ] respect考虑
- [ ] respectively各自的;分别的
[ ] redundant过多的;冗余的
[ ] S
[ ] susceptible敏感的
- [ ] stochastic可能的;随机的
- [ ] symmetric对称的
- [ ] sophisticated复杂的
- [ ] spurious假的;伪造的
- [ ] subtract减去;减法器
- [ ] simultaneously同时发生地;同步地
- [ ] suffice满足
- [ ] scarce稀有的,难得的
- [ ] split分解,分离
- [ ] subset子集
- [ ] statistic统计量
- [ ] successive iteratious连续的迭代
- [ ] scale标度
- [ ] sort of有几分的
[ ] squares平方
[ ] T
[ ] trajectory轨迹
- [ ] temporarily暂时的
- [ ] terminology专用名词
- [ ] tolerance容忍;公差
- [ ] thumb翻阅
- [ ] threshold阈,临界
- [ ] theorem定理
[ ] tangent正弦
[ ] U
[ ] unit-length vector单位向量
[ ] V
[ ] valid有效的,正确的
- [ ] variance方差
- [ ] variable变量;变元
- [ ] vocabulary词汇
[ ] valued经估价的;宝贵的
[ ] W
[1038 ] wrapper包装
[ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]
- [ ]