机器学习专业英语单词

news/2024/11/28 13:46:03/

常用英语词汇-andrew Ng课程

  • [1 ] intensity 强度
  • [2 ] Regression 回归
  • [3 ] Loss function 损失函数
  • [4 ] non-convex 非凸函数
  • [5 ] neural network 神经网络
  • [ ] supervised learning 监督学习
  • [ ] regression problem 回归问题处理的是连续的问题
  • [ ] classification problem 分类问题处理的问题是离散的而不是连续的
    回归问题和分类问题的区别应该在于 回归问题的结果是连续的,分类问题的结果是离散的。
  • [ ] discreet value 离散值
  • [ ] support vector machines 支持向量机,用来处理分类算法中输入的维度不单一的情况(甚至输入维度为无穷)
  • [ ] learning theory 学习理论
  • [ ] learning algorithms 学习算法
  • [ ] unsupervised learning 无监督学习
  • [ ] gradient descent 梯度下降
  • [ ] linear regression 线性回归
  • [ ] Neural Network 神经网络
  • [ ] gradient descent 梯度下降 监督学习的一种算法,用来拟合的算法
  • [ ] normal equations
  • [ ] linear algebra 线性代数 原谅我英语不太好
  • [ ] superscript上标
  • [ ] exponentiation 指数
  • [ ] training set 训练集合
  • [ ] training example 训练样本
  • [ ] hypothesis 假设,用来表示学习算法的输出,叫我们不要太纠结H的意思,因为这只是历史的惯例
  • [ ] LMS algorithm “least mean squares” 最小二乘法算法
  • [ ] batch gradient descent 批量梯度下降,因为每次都会计算 最小拟合的方差,所以运算慢
  • [ ] constantly gradient descent 字幕组翻译成“随机梯度下降” 我怎么觉得是“常量梯度下降”也就是梯度下降的运算次数不变,一般比批量梯度下降速度快,但是通常不是那么准确
  • [ ] iterative algorithm 迭代算法
  • [ ] partial derivative 偏导数
  • [ ] contour 等高线
  • [ ] quadratic function 二元函数
  • [ ] locally weighted regression局部加权回归
  • [ ] underfitting欠拟合
  • [ ] overfitting 过拟合
  • [ ] non-parametric learning algorithms 无参数学习算法
  • [ ] parametric learning algorithm 参数学习算法
  • [ ] other

  • [ ] activation 激活值

  • [ ] activation function 激活函数
  • [ ] additive noise 加性噪声
  • [ ] autoencoder 自编码器
  • [ ] Autoencoders 自编码算法
  • [ ] average firing rate 平均激活率
  • [ ] average sum-of-squares error 均方差
  • [ ] backpropagation 后向传播
  • [ ] basis 基
  • [ ] basis feature vectors 特征基向量
  • [50 ] batch gradient ascent 批量梯度上升法
  • [ ] Bayesian regularization method 贝叶斯规则化方法
  • [ ] Bernoulli random variable 伯努利随机变量
  • [ ] bias term 偏置项
  • [ ] binary classfication 二元分类
  • [ ] class labels 类型标记
  • [ ] concatenation 级联
  • [ ] conjugate gradient 共轭梯度
  • [ ] contiguous groups 联通区域
  • [ ] convex optimization software 凸优化软件
  • [ ] convolution 卷积
  • [ ] cost function 代价函数
  • [ ] covariance matrix 协方差矩阵
  • [ ] DC component 直流分量
  • [ ] decorrelation 去相关
  • [ ] degeneracy 退化
  • [ ] demensionality reduction 降维
  • [ ] derivative 导函数
  • [ ] diagonal 对角线
  • [ ] diffusion of gradients 梯度的弥散
  • [ ] eigenvalue 特征值
  • [ ] eigenvector 特征向量
  • [ ] error term 残差
  • [ ] feature matrix 特征矩阵
  • [ ] feature standardization 特征标准化
  • [ ] feedforward architectures 前馈结构算法
  • [ ] feedforward neural network 前馈神经网络
  • [ ] feedforward pass 前馈传导
  • [ ] fine-tuned 微调
  • [ ] first-order feature 一阶特征
  • [ ] forward pass 前向传导
  • [ ] forward propagation 前向传播
  • [ ] Gaussian prior 高斯先验概率
  • [ ] generative model 生成模型
  • [ ] gradient descent 梯度下降
  • [ ] Greedy layer-wise training 逐层贪婪训练方法
  • [ ] grouping matrix 分组矩阵
  • [ ] Hadamard product 阿达马乘积
  • [ ] Hessian matrix Hessian 矩阵
  • [ ] hidden layer 隐含层
  • [ ] hidden units 隐藏神经元
  • [ ] Hierarchical grouping 层次型分组
  • [ ] higher-order features 更高阶特征
  • [ ] highly non-convex optimization problem 高度非凸的优化问题
  • [ ] histogram 直方图
  • [ ] hyperbolic tangent 双曲正切函数
  • [ ] hypothesis 估值,假设
  • [ ] identity activation function 恒等激励函数
  • [ ] IID 独立同分布
  • [ ] illumination 照明
  • [100 ] inactive 抑制
  • [ ] independent component analysis 独立成份分析
  • [ ] input domains 输入域
  • [ ] input layer 输入层
  • [ ] intensity 亮度/灰度
  • [ ] intercept term 截距
  • [ ] KL divergence 相对熵
  • [ ] KL divergence KL分散度
  • [ ] k-Means K-均值
  • [ ] learning rate 学习速率
  • [ ] least squares 最小二乘法
  • [ ] linear correspondence 线性响应
  • [ ] linear superposition 线性叠加
  • [ ] line-search algorithm 线搜索算法
  • [ ] local mean subtraction 局部均值消减
  • [ ] local optima 局部最优解
  • [ ] logistic regression 逻辑回归
  • [ ] loss function 损失函数
  • [ ] low-pass filtering 低通滤波
  • [ ] magnitude 幅值
  • [ ] MAP 极大后验估计
  • [ ] maximum likelihood estimation 极大似然估计
  • [ ] mean 平均值
  • [ ] MFCC Mel 倒频系数
  • [ ] multi-class classification 多元分类
  • [ ] neural networks 神经网络
  • [ ] neuron 神经元
  • [ ] Newton’s method 牛顿法
  • [ ] non-convex function 非凸函数
  • [ ] non-linear feature 非线性特征
  • [ ] norm 范式
  • [ ] norm bounded 有界范数
  • [ ] norm constrained 范数约束
  • [ ] normalization 归一化
  • [ ] numerical roundoff errors 数值舍入误差
  • [ ] numerically checking 数值检验
  • [ ] numerically reliable 数值计算上稳定
  • [ ] object detection 物体检测
  • [ ] objective function 目标函数
  • [ ] off-by-one error 缺位错误
  • [ ] orthogonalization 正交化
  • [ ] output layer 输出层
  • [ ] overall cost function 总体代价函数
  • [ ] over-complete basis 超完备基
  • [ ] over-fitting 过拟合
  • [ ] parts of objects 目标的部件
  • [ ] part-whole decompostion 部分-整体分解
  • [ ] PCA 主元分析
  • [ ] penalty term 惩罚因子
  • [ ] per-example mean subtraction 逐样本均值消减
  • [150 ] pooling 池化
  • [ ] pretrain 预训练
  • [ ] principal components analysis 主成份分析
  • [ ] quadratic constraints 二次约束
  • [ ] RBMs 受限Boltzman机
  • [ ] reconstruction based models 基于重构的模型
  • [ ] reconstruction cost 重建代价
  • [ ] reconstruction term 重构项
  • [ ] redundant 冗余
  • [ ] reflection matrix 反射矩阵
  • [ ] regularization 正则化
  • [ ] regularization term 正则化项
  • [ ] rescaling 缩放
  • [ ] robust 鲁棒性
  • [ ] run 行程
  • [ ] second-order feature 二阶特征
  • [ ] sigmoid activation function S型激励函数
  • [ ] significant digits 有效数字
  • [ ] singular value 奇异值
  • [ ] singular vector 奇异向量
  • [ ] smoothed L1 penalty 平滑的L1范数惩罚
  • [ ] Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏惩罚函数
  • [ ] smoothing 平滑
  • [ ] Softmax Regresson Softmax回归
  • [ ] sorted in decreasing order 降序排列
  • [ ] source features 源特征
  • [ ] sparse autoencoder 消减归一化
  • [ ] Sparsity 稀疏性
  • [ ] sparsity parameter 稀疏性参数
  • [ ] sparsity penalty 稀疏惩罚
  • [ ] square function 平方函数
  • [ ] squared-error 方差
  • [ ] stationary 平稳性(不变性)
  • [ ] stationary stochastic process 平稳随机过程
  • [ ] step-size 步长值
  • [ ] supervised learning 监督学习
  • [ ] symmetric positive semi-definite matrix 对称半正定矩阵
  • [ ] symmetry breaking 对称失效
  • [ ] tanh function 双曲正切函数
  • [ ] the average activation 平均活跃度
  • [ ] the derivative checking method 梯度验证方法
  • [ ] the empirical distribution 经验分布函数
  • [ ] the energy function 能量函数
  • [ ] the Lagrange dual 拉格朗日对偶函数
  • [ ] the log likelihood 对数似然函数
  • [ ] the pixel intensity value 像素灰度值
  • [ ] the rate of convergence 收敛速度
  • [ ] topographic cost term 拓扑代价项
  • [ ] topographic ordered 拓扑秩序
  • [ ] transformation 变换
  • [200 ] translation invariant 平移不变性
  • [ ] trivial answer 平凡解
  • [ ] under-complete basis 不完备基
  • [ ] unrolling 组合扩展
  • [ ] unsupervised learning 无监督学习
  • [ ] variance 方差
  • [ ] vecotrized implementation 向量化实现
  • [ ] vectorization 矢量化
  • [ ] visual cortex 视觉皮层
  • [ ] weight decay 权重衰减
  • [ ] weighted average 加权平均值
  • [ ] whitening 白化
  • [ ] zero-mean 均值为零

  • [ ] Letter A

  • [ ] Accumulated error backpropagation 累积误差逆传播

  • [ ] Activation Function 激活函数
  • [ ] Adaptive Resonance Theory/ART 自适应谐振理论
  • [ ] Addictive model 加性学习
  • [ ] Adversarial Networks 对抗网络
  • [ ] Affine Layer 仿射层
  • [ ] Affinity matrix 亲和矩阵
  • [ ] Agent 代理 / 智能体
  • [ ] Algorithm 算法
  • [ ] Alpha-beta pruning α-β剪枝
  • [ ] Anomaly detection 异常检测
  • [ ] Approximation 近似
  • [ ] Area Under ROC Curve/AUC Roc 曲线下面积
  • [ ] Artificial General Intelligence/AGI 通用人工智能
  • [ ] Artificial Intelligence/AI 人工智能
  • [ ] Association analysis 关联分析
  • [ ] Attention mechanism 注意力机制
  • [ ] Attribute conditional independence assumption 属性条件独立性假设
  • [ ] Attribute space 属性空间
  • [ ] Attribute value 属性值
  • [ ] Autoencoder 自编码器
  • [ ] Automatic speech recognition 自动语音识别
  • [ ] Automatic summarization 自动摘要
  • [ ] Average gradient 平均梯度
  • [ ] Average-Pooling 平均池化

  • [ ] Letter B

  • [ ] Backpropagation Through Time 通过时间的反向传播

  • [ ] Backpropagation/BP 反向传播
  • [ ] Base learner 基学习器
  • [ ] Base learning algorithm 基学习算法
  • [ ] Batch Normalization/BN 批量归一化
  • [ ] Bayes decision rule 贝叶斯判定准则
  • [250 ] Bayes Model Averaging/BMA 贝叶斯模型平均
  • [ ] Bayes optimal classifier 贝叶斯最优分类器
  • [ ] Bayesian decision theory 贝叶斯决策论
  • [ ] Bayesian network 贝叶斯网络
  • [ ] Between-class scatter matrix 类间散度矩阵
  • [ ] Bias 偏置 / 偏差
  • [ ] Bias-variance decomposition 偏差-方差分解
  • [ ] Bias-Variance Dilemma 偏差 – 方差困境
  • [ ] Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆
  • [ ] Binary classification 二分类
  • [ ] Binomial test 二项检验
  • [ ] Bi-partition 二分法
  • [ ] Boltzmann machine 玻尔兹曼机
  • [ ] Bootstrap sampling 自助采样法/可重复采样/有放回采样
  • [ ] Bootstrapping 自助法
  • [ ] Break-Event Point/BEP 平衡点

  • [ ] Letter C

  • [ ] Calibration 校准

  • [ ] Cascade-Correlation 级联相关
  • [ ] Categorical attribute 离散属性
  • [ ] Class-conditional probability 类条件概率
  • [ ] Classification and regression tree/CART 分类与回归树
  • [ ] Classifier 分类器
  • [ ] Class-imbalance 类别不平衡
  • [ ] Closed -form 闭式
  • [ ] Cluster 簇/类/集群
  • [ ] Cluster analysis 聚类分析
  • [ ] Clustering 聚类
  • [ ] Clustering ensemble 聚类集成
  • [ ] Co-adapting 共适应
  • [ ] Coding matrix 编码矩阵
  • [ ] COLT 国际学习理论会议
  • [ ] Committee-based learning 基于委员会的学习
  • [ ] Competitive learning 竞争型学习
  • [ ] Component learner 组件学习器
  • [ ] Comprehensibility 可解释性
  • [ ] Computation Cost 计算成本
  • [ ] Computational Linguistics 计算语言学
  • [ ] Computer vision 计算机视觉
  • [ ] Concept drift 概念漂移
  • [ ] Concept Learning System /CLS 概念学习系统
  • [ ] Conditional entropy 条件熵
  • [ ] Conditional mutual information 条件互信息
  • [ ] Conditional Probability Table/CPT 条件概率表
  • [ ] Conditional random field/CRF 条件随机场
  • [ ] Conditional risk 条件风险
  • [ ] Confidence 置信度
  • [ ] Confusion matrix 混淆矩阵
  • [300 ] Connection weight 连接权
  • [ ] Connectionism 连结主义
  • [ ] Consistency 一致性/相合性
  • [ ] Contingency table 列联表
  • [ ] Continuous attribute 连续属性
  • [ ] Convergence 收敛
  • [ ] Conversational agent 会话智能体
  • [ ] Convex quadratic programming 凸二次规划
  • [ ] Convexity 凸性
  • [ ] Convolutional neural network/CNN 卷积神经网络
  • [ ] Co-occurrence 同现
  • [ ] Correlation coefficient 相关系数
  • [ ] Cosine similarity 余弦相似度
  • [ ] Cost curve 成本曲线
  • [ ] Cost Function 成本函数
  • [ ] Cost matrix 成本矩阵
  • [ ] Cost-sensitive 成本敏感
  • [ ] Cross entropy 交叉熵
  • [ ] Cross validation 交叉验证
  • [ ] Crowdsourcing 众包
  • [ ] Curse of dimensionality 维数灾难
  • [ ] Cut point 截断点
  • [ ] Cutting plane algorithm 割平面法

  • [ ] Letter D

  • [ ] Data mining 数据挖掘

  • [ ] Data set 数据集
  • [ ] Decision Boundary 决策边界
  • [ ] Decision stump 决策树桩
  • [ ] Decision tree 决策树/判定树
  • [ ] Deduction 演绎
  • [ ] Deep Belief Network 深度信念网络
  • [ ] Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积生成对抗网络
  • [ ] Deep learning 深度学习
  • [ ] Deep neural network/DNN 深度神经网络
  • [ ] Deep Q-Learning 深度 Q 学习
  • [ ] Deep Q-Network 深度 Q 网络
  • [ ] Density estimation 密度估计
  • [ ] Density-based clustering 密度聚类
  • [ ] Differentiable neural computer 可微分神经计算机
  • [ ] Dimensionality reduction algorithm 降维算法
  • [ ] Directed edge 有向边
  • [ ] Disagreement measure 不合度量
  • [ ] Discriminative model 判别模型
  • [ ] Discriminator 判别器
  • [ ] Distance measure 距离度量
  • [ ] Distance metric learning 距离度量学习
  • [ ] Distribution 分布
  • [ ] Divergence 散度
  • [350 ] Diversity measure 多样性度量/差异性度量
  • [ ] Domain adaption 领域自适应
  • [ ] Downsampling 下采样
  • [ ] D-separation (Directed separation) 有向分离
  • [ ] Dual problem 对偶问题
  • [ ] Dummy node 哑结点
  • [ ] Dynamic Fusion 动态融合
  • [ ] Dynamic programming 动态规划

  • [ ] Letter E

  • [ ] Eigenvalue decomposition 特征值分解

  • [ ] Embedding 嵌入
  • [ ] Emotional analysis 情绪分析
  • [ ] Empirical conditional entropy 经验条件熵
  • [ ] Empirical entropy 经验熵
  • [ ] Empirical error 经验误差
  • [ ] Empirical risk 经验风险
  • [ ] End-to-End 端到端
  • [ ] Energy-based model 基于能量的模型
  • [ ] Ensemble learning 集成学习
  • [ ] Ensemble pruning 集成修剪
  • [ ] Error Correcting Output Codes/ECOC 纠错输出码
  • [ ] Error rate 错误率
  • [ ] Error-ambiguity decomposition 误差-分歧分解
  • [ ] Euclidean distance 欧氏距离
  • [ ] Evolutionary computation 演化计算
  • [ ] Expectation-Maximization 期望最大化
  • [ ] Expected loss 期望损失
  • [ ] Exploding Gradient Problem 梯度爆炸问题
  • [ ] Exponential loss function 指数损失函数
  • [ ] Extreme Learning Machine/ELM 超限学习机

  • [ ] Letter F

  • [ ] Factorization 因子分解

  • [ ] False negative 假负类
  • [ ] False positive 假正类
  • [ ] False Positive Rate/FPR 假正例率
  • [ ] Feature engineering 特征工程
  • [ ] Feature selection 特征选择
  • [ ] Feature vector 特征向量
  • [ ] Featured Learning 特征学习
  • [ ] Feedforward Neural Networks/FNN 前馈神经网络
  • [ ] Fine-tuning 微调
  • [ ] Flipping output 翻转法
  • [ ] Fluctuation 震荡
  • [ ] Forward stagewise algorithm 前向分步算法
  • [ ] Frequentist 频率主义学派
  • [ ] Full-rank matrix 满秩矩阵
  • [400 ] Functional neuron 功能神经元

  • [ ] Letter G

  • [ ] Gain ratio 增益率

  • [ ] Game theory 博弈论
  • [ ] Gaussian kernel function 高斯核函数
  • [ ] Gaussian Mixture Model 高斯混合模型
  • [ ] General Problem Solving 通用问题求解
  • [ ] Generalization 泛化
  • [ ] Generalization error 泛化误差
  • [ ] Generalization error bound 泛化误差上界
  • [ ] Generalized Lagrange function 广义拉格朗日函数
  • [ ] Generalized linear model 广义线性模型
  • [ ] Generalized Rayleigh quotient 广义瑞利商
  • [ ] Generative Adversarial Networks/GAN 生成对抗网络
  • [ ] Generative Model 生成模型
  • [ ] Generator 生成器
  • [ ] Genetic Algorithm/GA 遗传算法
  • [ ] Gibbs sampling 吉布斯采样
  • [ ] Gini index 基尼指数
  • [ ] Global minimum 全局最小
  • [ ] Global Optimization 全局优化
  • [ ] Gradient boosting 梯度提升
  • [ ] Gradient Descent 梯度下降
  • [ ] Graph theory 图论
  • [ ] Ground-truth 真相/真实

  • [ ] Letter H

  • [ ] Hard margin 硬间隔

  • [ ] Hard voting 硬投票
  • [ ] Harmonic mean 调和平均
  • [ ] Hesse matrix 海塞矩阵
  • [ ] Hidden dynamic model 隐动态模型
  • [ ] Hidden layer 隐藏层
  • [ ] Hidden Markov Model/HMM 隐马尔可夫模型
  • [ ] Hierarchical clustering 层次聚类
  • [ ] Hilbert space 希尔伯特空间
  • [ ] Hinge loss function 合页损失函数
  • [ ] Hold-out 留出法
  • [ ] Homogeneous 同质
  • [ ] Hybrid computing 混合计算
  • [ ] Hyperparameter 超参数
  • [ ] Hypothesis 假设
  • [ ] Hypothesis test 假设验证

  • [ ] Letter I

  • [ ] ICML 国际机器学习会议

  • [450 ] Improved iterative scaling/IIS 改进的迭代尺度法
  • [ ] Incremental learning 增量学习
  • [ ] Independent and identically distributed/i.i.d. 独立同分布
  • [ ] Independent Component Analysis/ICA 独立成分分析
  • [ ] Indicator function 指示函数
  • [ ] Individual learner 个体学习器
  • [ ] Induction 归纳
  • [ ] Inductive bias 归纳偏好
  • [ ] Inductive learning 归纳学习
  • [ ] Inductive Logic Programming/ILP 归纳逻辑程序设计
  • [ ] Information entropy 信息熵
  • [ ] Information gain 信息增益
  • [ ] Input layer 输入层
  • [ ] Insensitive loss 不敏感损失
  • [ ] Inter-cluster similarity 簇间相似度
  • [ ] International Conference for Machine Learning/ICML 国际机器学习大会
  • [ ] Intra-cluster similarity 簇内相似度
  • [ ] Intrinsic value 固有值
  • [ ] Isometric Mapping/Isomap 等度量映射
  • [ ] Isotonic regression 等分回归
  • [ ] Iterative Dichotomiser 迭代二分器

  • [ ] Letter K

  • [ ] Kernel method 核方法

  • [ ] Kernel trick 核技巧
  • [ ] Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析
  • [ ] K-fold cross validation k 折交叉验证/k 倍交叉验证
  • [ ] K-Means Clustering K – 均值聚类
  • [ ] K-Nearest Neighbours Algorithm/KNN K近邻算法
  • [ ] Knowledge base 知识库
  • [ ] Knowledge Representation 知识表征

  • [ ] Letter L

  • [ ] Label space 标记空间

  • [ ] Lagrange duality 拉格朗日对偶性
  • [ ] Lagrange multiplier 拉格朗日乘子
  • [ ] Laplace smoothing 拉普拉斯平滑
  • [ ] Laplacian correction 拉普拉斯修正
  • [ ] Latent Dirichlet Allocation 隐狄利克雷分布
  • [ ] Latent semantic analysis 潜在语义分析
  • [ ] Latent variable 隐变量
  • [ ] Lazy learning 懒惰学习
  • [ ] Learner 学习器
  • [ ] Learning by analogy 类比学习
  • [ ] Learning rate 学习率
  • [ ] Learning Vector Quantization/LVQ 学习向量量化
  • [ ] Least squares regression tree 最小二乘回归树
  • [ ] Leave-One-Out/LOO 留一法
  • [500 ] linear chain conditional random field 线性链条件随机场
  • [ ] Linear Discriminant Analysis/LDA 线性判别分析
  • [ ] Linear model 线性模型
  • [ ] Linear Regression 线性回归
  • [ ] Link function 联系函数
  • [ ] Local Markov property 局部马尔可夫性
  • [ ] Local minimum 局部最小
  • [ ] Log likelihood 对数似然
  • [ ] Log odds/logit 对数几率
  • [ ] Logistic Regression Logistic 回归
  • [ ] Log-likelihood 对数似然
  • [ ] Log-linear regression 对数线性回归
  • [ ] Long-Short Term Memory/LSTM 长短期记忆
  • [ ] Loss function 损失函数

  • [ ] Letter M

  • [ ] Machine translation/MT 机器翻译

  • [ ] Macron-P 宏查准率
  • [ ] Macron-R 宏查全率
  • [ ] Majority voting 绝对多数投票法
  • [ ] Manifold assumption 流形假设
  • [ ] Manifold learning 流形学习
  • [ ] Margin theory 间隔理论
  • [ ] Marginal distribution 边际分布
  • [ ] Marginal independence 边际独立性
  • [ ] Marginalization 边际化
  • [ ] Markov Chain Monte Carlo/MCMC 马尔可夫链蒙特卡罗方法
  • [ ] Markov Random Field 马尔可夫随机场
  • [ ] Maximal clique 最大团
  • [ ] Maximum Likelihood Estimation/MLE 极大似然估计/极大似然法
  • [ ] Maximum margin 最大间隔
  • [ ] Maximum weighted spanning tree 最大带权生成树
  • [ ] Max-Pooling 最大池化
  • [ ] Mean squared error 均方误差
  • [ ] Meta-learner 元学习器
  • [ ] Metric learning 度量学习
  • [ ] Micro-P 微查准率
  • [ ] Micro-R 微查全率
  • [ ] Minimal Description Length/MDL 最小描述长度
  • [ ] Minimax game 极小极大博弈
  • [ ] Misclassification cost 误分类成本
  • [ ] Mixture of experts 混合专家
  • [ ] Momentum 动量
  • [ ] Moral graph 道德图/端正图
  • [ ] Multi-class classification 多分类
  • [ ] Multi-document summarization 多文档摘要
  • [ ] Multi-layer feedforward neural networks 多层前馈神经网络
  • [ ] Multilayer Perceptron/MLP 多层感知器
  • [ ] Multimodal learning 多模态学习
  • [550 ] Multiple Dimensional Scaling 多维缩放
  • [ ] Multiple linear regression 多元线性回归
  • [ ] Multi-response Linear Regression /MLR 多响应线性回归
  • [ ] Mutual information 互信息

  • [ ] Letter N

  • [ ] Naive bayes 朴素贝叶斯

  • [ ] Naive Bayes Classifier 朴素贝叶斯分类器
  • [ ] Named entity recognition 命名实体识别
  • [ ] Nash equilibrium 纳什均衡
  • [ ] Natural language generation/NLG 自然语言生成
  • [ ] Natural language processing 自然语言处理
  • [ ] Negative class 负类
  • [ ] Negative correlation 负相关法
  • [ ] Negative Log Likelihood 负对数似然
  • [ ] Neighbourhood Component Analysis/NCA 近邻成分分析
  • [ ] Neural Machine Translation 神经机器翻译
  • [ ] Neural Turing Machine 神经图灵机
  • [ ] Newton method 牛顿法
  • [ ] NIPS 国际神经信息处理系统会议
  • [ ] No Free Lunch Theorem/NFL 没有免费的午餐定理
  • [ ] Noise-contrastive estimation 噪音对比估计
  • [ ] Nominal attribute 列名属性
  • [ ] Non-convex optimization 非凸优化
  • [ ] Nonlinear model 非线性模型
  • [ ] Non-metric distance 非度量距离
  • [ ] Non-negative matrix factorization 非负矩阵分解
  • [ ] Non-ordinal attribute 无序属性
  • [ ] Non-Saturating Game 非饱和博弈
  • [ ] Norm 范数
  • [ ] Normalization 归一化
  • [ ] Nuclear norm 核范数
  • [ ] Numerical attribute 数值属性

  • [ ] Letter O

  • [ ] Objective function 目标函数

  • [ ] Oblique decision tree 斜决策树
  • [ ] Occam’s razor 奥卡姆剃刀
  • [ ] Odds 几率
  • [ ] Off-Policy 离策略
  • [ ] One shot learning 一次性学习
  • [ ] One-Dependent Estimator/ODE 独依赖估计
  • [ ] On-Policy 在策略
  • [ ] Ordinal attribute 有序属性
  • [ ] Out-of-bag estimate 包外估计
  • [ ] Output layer 输出层
  • [ ] Output smearing 输出调制法
  • [ ] Overfitting 过拟合/过配
  • [600 ] Oversampling 过采样

  • [ ] Letter P

  • [ ] Paired t-test 成对 t 检验

  • [ ] Pairwise 成对型
  • [ ] Pairwise Markov property 成对马尔可夫性
  • [ ] Parameter 参数
  • [ ] Parameter estimation 参数估计
  • [ ] Parameter tuning 调参
  • [ ] Parse tree 解析树
  • [ ] Particle Swarm Optimization/PSO 粒子群优化算法
  • [ ] Part-of-speech tagging 词性标注
  • [ ] Perceptron 感知机
  • [ ] Performance measure 性能度量
  • [ ] Plug and Play Generative Network 即插即用生成网络
  • [ ] Plurality voting 相对多数投票法
  • [ ] Polarity detection 极性检测
  • [ ] Polynomial kernel function 多项式核函数
  • [ ] Pooling 池化
  • [ ] Positive class 正类
  • [ ] Positive definite matrix 正定矩阵
  • [ ] Post-hoc test 后续检验
  • [ ] Post-pruning 后剪枝
  • [ ] potential function 势函数
  • [ ] Precision 查准率/准确率
  • [ ] Prepruning 预剪枝
  • [ ] Principal component analysis/PCA 主成分分析
  • [ ] Principle of multiple explanations 多释原则
  • [ ] Prior 先验
  • [ ] Probability Graphical Model 概率图模型
  • [ ] Proximal Gradient Descent/PGD 近端梯度下降
  • [ ] Pruning 剪枝
  • [ ] Pseudo-label 伪标记

  • [ ] Letter Q

  • [ ] Quantized Neural Network 量子化神经网络

  • [ ] Quantum computer 量子计算机
  • [ ] Quantum Computing 量子计算
  • [ ] Quasi Newton method 拟牛顿法

  • [ ] Letter R

  • [ ] Radial Basis Function/RBF 径向基函数

  • [ ] Random Forest Algorithm 随机森林算法
  • [ ] Random walk 随机漫步
  • [ ] Recall 查全率/召回率
  • [ ] Receiver Operating Characteristic/ROC 受试者工作特征
  • [ ] Rectified Linear Unit/ReLU 线性修正单元
  • [650 ] Recurrent Neural Network 循环神经网络
  • [ ] Recursive neural network 递归神经网络
  • [ ] Reference model 参考模型
  • [ ] Regression 回归
  • [ ] Regularization 正则化
  • [ ] Reinforcement learning/RL 强化学习
  • [ ] Representation learning 表征学习
  • [ ] Representer theorem 表示定理
  • [ ] reproducing kernel Hilbert space/RKHS 再生核希尔伯特空间
  • [ ] Re-sampling 重采样法
  • [ ] Rescaling 再缩放
  • [ ] Residual Mapping 残差映射
  • [ ] Residual Network 残差网络
  • [ ] Restricted Boltzmann Machine/RBM 受限玻尔兹曼机
  • [ ] Restricted Isometry Property/RIP 限定等距性
  • [ ] Re-weighting 重赋权法
  • [ ] Robustness 稳健性/鲁棒性
  • [ ] Root node 根结点
  • [ ] Rule Engine 规则引擎
  • [ ] Rule learning 规则学习

  • [ ] Letter S

  • [ ] Saddle point 鞍点

  • [ ] Sample space 样本空间
  • [ ] Sampling 采样
  • [ ] Score function 评分函数
  • [ ] Self-Driving 自动驾驶
  • [ ] Self-Organizing Map/SOM 自组织映射
  • [ ] Semi-naive Bayes classifiers 半朴素贝叶斯分类器
  • [ ] Semi-Supervised Learning 半监督学习
  • [ ] semi-Supervised Support Vector Machine 半监督支持向量机
  • [ ] Sentiment analysis 情感分析
  • [ ] Separating hyperplane 分离超平面
  • [ ] Sigmoid function Sigmoid 函数
  • [ ] Similarity measure 相似度度量
  • [ ] Simulated annealing 模拟退火
  • [ ] Simultaneous localization and mapping 同步定位与地图构建
  • [ ] Singular Value Decomposition 奇异值分解
  • [ ] Slack variables 松弛变量
  • [ ] Smoothing 平滑
  • [ ] Soft margin 软间隔
  • [ ] Soft margin maximization 软间隔最大化
  • [ ] Soft voting 软投票
  • [ ] Sparse representation 稀疏表征
  • [ ] Sparsity 稀疏性
  • [ ] Specialization 特化
  • [ ] Spectral Clustering 谱聚类
  • [ ] Speech Recognition 语音识别
  • [ ] Splitting variable 切分变量
  • [700 ] Squashing function 挤压函数
  • [ ] Stability-plasticity dilemma 可塑性-稳定性困境
  • [ ] Statistical learning 统计学习
  • [ ] Status feature function 状态特征函
  • [ ] Stochastic gradient descent 随机梯度下降
  • [ ] Stratified sampling 分层采样
  • [ ] Structural risk 结构风险
  • [ ] Structural risk minimization/SRM 结构风险最小化
  • [ ] Subspace 子空间
  • [ ] Supervised learning 监督学习/有导师学习
  • [ ] support vector expansion 支持向量展式
  • [ ] Support Vector Machine/SVM 支持向量机
  • [ ] Surrogat loss 替代损失
  • [ ] Surrogate function 替代函数
  • [ ] Symbolic learning 符号学习
  • [ ] Symbolism 符号主义
  • [ ] Synset 同义词集

  • [ ] Letter T

  • [ ] T-Distribution Stochastic Neighbour Embedding/t-SNE T – 分布随机近邻嵌入

  • [ ] Tensor 张量
  • [ ] Tensor Processing Units/TPU 张量处理单元
  • [ ] The least square method 最小二乘法
  • [ ] Threshold 阈值
  • [ ] Threshold logic unit 阈值逻辑单元
  • [ ] Threshold-moving 阈值移动
  • [ ] Time Step 时间步骤
  • [ ] Tokenization 标记化
  • [ ] Training error 训练误差
  • [ ] Training instance 训练示例/训练例
  • [ ] Transductive learning 直推学习
  • [ ] Transfer learning 迁移学习
  • [ ] Treebank 树库
  • [ ] Tria-by-error 试错法
  • [ ] True negative 真负类
  • [ ] True positive 真正类
  • [ ] True Positive Rate/TPR 真正例率
  • [ ] Turing Machine 图灵机
  • [ ] Twice-learning 二次学习

  • [ ] Letter U

  • [ ] Underfitting 欠拟合/欠配

  • [ ] Undersampling 欠采样
  • [ ] Understandability 可理解性
  • [ ] Unequal cost 非均等代价
  • [ ] Unit-step function 单位阶跃函数
  • [ ] Univariate decision tree 单变量决策树
  • [ ] Unsupervised learning 无监督学习/无导师学习
  • [ ] Unsupervised layer-wise training 无监督逐层训练
  • [ ] Upsampling 上采样

  • [ ] Letter V

  • [ ] Vanishing Gradient Problem 梯度消失问题

  • [ ] Variational inference 变分推断
  • [ ] VC Theory VC维理论
  • [ ] Version space 版本空间
  • [ ] Viterbi algorithm 维特比算法
  • [760 ] Von Neumann architecture 冯 · 诺伊曼架构

  • [ ] Letter W

  • [ ] Wasserstein GAN/WGAN Wasserstein生成对抗网络

  • [ ] Weak learner 弱学习器
  • [ ] Weight 权重
  • [ ] Weight sharing 权共享
  • [ ] Weighted voting 加权投票法
  • [ ] Within-class scatter matrix 类内散度矩阵
  • [ ] Word embedding 词嵌入
  • [ ] Word sense disambiguation 词义消歧

  • [ ] Letter Z

  • [ ] Zero-data learning 零数据学习

  • [ ] Zero-shot learning 零次学习

  • [ ] A

  • [ ] approximations近似值

  • [ ] arbitrary随意的
  • [ ] affine仿射的
  • [ ] arbitrary任意的
  • [ ] amino acid氨基酸
  • [ ] amenable经得起检验的
  • [ ] axiom公理,原则
  • [ ] abstract提取
  • [ ] architecture架构,体系结构;建造业
  • [ ] absolute绝对的
  • [ ] arsenal军火库
  • [ ] assignment分配
  • [ ] algebra线性代数
  • [ ] asymptotically无症状的
  • [ ] appropriate恰当的

  • [ ] B

  • [ ] bias偏差

  • [ ] brevity简短,简洁;短暂
  • [800 ] broader广泛
  • [ ] briefly简短的
  • [ ] batch批量

  • [ ] C

  • [ ] convergence 收敛,集中到一点

  • [ ] convex凸的
  • [ ] contours轮廓
  • [ ] constraint约束
  • [ ] constant常理
  • [ ] commercial商务的
  • [ ] complementarity补充
  • [ ] coordinate ascent同等级上升
  • [ ] clipping剪下物;剪报;修剪
  • [ ] component分量;部件
  • [ ] continuous连续的
  • [ ] covariance协方差
  • [ ] canonical正规的,正则的
  • [ ] concave非凸的
  • [ ] corresponds相符合;相当;通信
  • [ ] corollary推论
  • [ ] concrete具体的事物,实在的东西
  • [ ] cross validation交叉验证
  • [ ] correlation相互关系
  • [ ] convention约定
  • [ ] cluster一簇
  • [ ] centroids 质心,形心
  • [ ] converge收敛
  • [ ] computationally计算(机)的
  • [ ] calculus计算

  • [ ] D

  • [ ] derive获得,取得

  • [ ] dual二元的
  • [ ] duality二元性;二象性;对偶性
  • [ ] derivation求导;得到;起源
  • [ ] denote预示,表示,是…的标志;意味着,[逻]指称
  • [ ] divergence 散度;发散性
  • [ ] dimension尺度,规格;维数
  • [ ] dot小圆点
  • [ ] distortion变形
  • [ ] density概率密度函数
  • [ ] discrete离散的
  • [ ] discriminative有识别能力的
  • [ ] diagonal对角
  • [ ] dispersion分散,散开
  • [ ] determinant决定因素
  • [849 ] disjoint不相交的

  • [ ] E

  • [ ] encounter遇到

  • [ ] ellipses椭圆
  • [ ] equality等式
  • [ ] extra额外的
  • [ ] empirical经验;观察
  • [ ] ennmerate例举,计数
  • [ ] exceed超过,越出
  • [ ] expectation期望
  • [ ] efficient生效的
  • [ ] endow赋予
  • [ ] explicitly清楚的
  • [ ] exponential family指数家族
  • [ ] equivalently等价的

  • [ ] F

  • [ ] feasible可行的

  • [ ] forary初次尝试
  • [ ] finite有限的,限定的
  • [ ] forgo摒弃,放弃
  • [ ] fliter过滤
  • [ ] frequentist最常发生的
  • [ ] forward search前向式搜索
  • [ ] formalize使定形

  • [ ] G

  • [ ] generalized归纳的

  • [ ] generalization概括,归纳;普遍化;判断(根据不足)
  • [ ] guarantee保证;抵押品
  • [ ] generate形成,产生
  • [ ] geometric margins几何边界
  • [ ] gap裂口
  • [ ] generative生产的;有生产力的

  • [ ] H

  • [ ] heuristic启发式的;启发法;启发程序

  • [ ] hone怀恋;磨
  • [ ] hyperplane超平面

  • [ ] L

  • [ ] initial最初的

  • [ ] implement执行
  • [ ] intuitive凭直觉获知的
  • [ ] incremental增加的
  • [900 ] intercept截距
  • [ ] intuitious直觉
  • [ ] instantiation例子
  • [ ] indicator指示物,指示器
  • [ ] interative重复的,迭代的
  • [ ] integral积分
  • [ ] identical相等的;完全相同的
  • [ ] indicate表示,指出
  • [ ] invariance不变性,恒定性
  • [ ] impose把…强加于
  • [ ] intermediate中间的
  • [ ] interpretation解释,翻译

  • [ ] J

  • [ ] joint distribution联合概率

  • [ ] L

  • [ ] lieu替代

  • [ ] logarithmic对数的,用对数表示的
  • [ ] latent潜在的
  • [ ] Leave-one-out cross validation留一法交叉验证

  • [ ] M

  • [ ] magnitude巨大

  • [ ] mapping绘图,制图;映射
  • [ ] matrix矩阵
  • [ ] mutual相互的,共同的
  • [ ] monotonically单调的
  • [ ] minor较小的,次要的
  • [ ] multinomial多项的
  • [ ] multi-class classification二分类问题

  • [ ] N

  • [ ] nasty讨厌的

  • [ ] notation标志,注释
  • [ ] naïve朴素的

  • [ ] O

  • [ ] obtain得到

  • [ ] oscillate摆动
  • [ ] optimization problem最优化问题
  • [ ] objective function目标函数
  • [ ] optimal最理想的
  • [ ] orthogonal(矢量,矩阵等)正交的
  • [ ] orientation方向
  • [ ] ordinary普通的
  • [ ] occasionally偶然的

  • [ ] P

  • [ ] partial derivative偏导数

  • [ ] property性质
  • [ ] proportional成比例的
  • [ ] primal原始的,最初的
  • [ ] permit允许
  • [ ] pseudocode伪代码
  • [ ] permissible可允许的
  • [ ] polynomial多项式
  • [ ] preliminary预备
  • [ ] precision精度
  • [ ] perturbation 不安,扰乱
  • [ ] poist假定,设想
  • [ ] positive semi-definite半正定的
  • [ ] parentheses圆括号
  • [ ] posterior probability后验概率
  • [ ] plementarity补充
  • [ ] pictorially图像的
  • [ ] parameterize确定…的参数
  • [ ] poisson distribution柏松分布
  • [ ] pertinent相关的

  • [ ] Q

  • [ ] quadratic二次的

  • [ ] quantity量,数量;分量
  • [ ] query疑问的

  • [ ] R

  • [ ] regularization使系统化;调整

  • [ ] reoptimize重新优化
  • [ ] restrict限制;限定;约束
  • [ ] reminiscent回忆往事的;提醒的;使人联想…的(of)
  • [ ] remark注意
  • [ ] random variable随机变量
  • [ ] respect考虑
  • [ ] respectively各自的;分别的
  • [ ] redundant过多的;冗余的

  • [ ] S

  • [ ] susceptible敏感的

  • [ ] stochastic可能的;随机的
  • [ ] symmetric对称的
  • [ ] sophisticated复杂的
  • [ ] spurious假的;伪造的
  • [ ] subtract减去;减法器
  • [ ] simultaneously同时发生地;同步地
  • [ ] suffice满足
  • [ ] scarce稀有的,难得的
  • [ ] split分解,分离
  • [ ] subset子集
  • [ ] statistic统计量
  • [ ] successive iteratious连续的迭代
  • [ ] scale标度
  • [ ] sort of有几分的
  • [ ] squares平方

  • [ ] T

  • [ ] trajectory轨迹

  • [ ] temporarily暂时的
  • [ ] terminology专用名词
  • [ ] tolerance容忍;公差
  • [ ] thumb翻阅
  • [ ] threshold阈,临界
  • [ ] theorem定理
  • [ ] tangent正弦

  • [ ] U

  • [ ] unit-length vector单位向量

  • [ ] V

  • [ ] valid有效的,正确的

  • [ ] variance方差
  • [ ] variable变量;变元
  • [ ] vocabulary词汇
  • [ ] valued经估价的;宝贵的

  • [ ] W

  • [1038 ] wrapper包装

  • [ ]

  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]

http://www.ppmy.cn/news/842324.html

相关文章

机器学习种9种常用算法

一、常见算法分类 分类方法 KNN逻辑斯蒂回归(logiscic)决策树朴素贝叶斯支持向量机SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.naive_ba…

深度学习英文缩写_深度学习相关专业词汇简称汇总

深度学习相关专业词汇简称汇总 zoerywzhougmail.com 作者:Zhouw 2016-3-15 版权声明:本文为博主原创文章,未经博主允许不得转载。 作者是深度学习的初学者,经由导师指导,稍微学习了解了一下RNN、LSTM的网络模型及求导&…

学习笔记 | 多层感知机(MLP)、Transformer

目录 多层感知机(MLP) Transformer 1. inputs 输入 2. Transformer的Encoder 2.1 Multi-Head Attention 2.2 Add&Normalize 2.3 Feed-Forward Networks 3. Transformer的Decoder 3.1Transformer Decoder的输入 3.2 Masked Multi-Head At…

java状态机学习总结

首先,我们需要了解,什么是状态机? 有限状态机(英语:finite-state machine,缩写:FSM)又称有限状态自动机,简称状态机,是表示有限个状态以及在这些状态之间的转…

白话机器学习算法理论+实战之支持向量机(SVM)

1. 写在前面 如果想从事数据挖掘或者机器学习的工作,掌握常用的机器学习算法是非常有必要的,比如我之前写过的一篇十大机器学习算法的小总结,在这简单的先捋一捋, 常见的机器学习算法: 监督学习算法:逻辑…

深度学习——感知机(perceptron)图文详解

感知机 一,什么是感知机二,用感知机搭建简单逻辑电路2.1 与门2.2 与非门,或门 三,感知机的实现3.1 简单感知机的实现3.2 导入权重和偏置3.3 使用权重和偏置的实现 四,感知机的局限性4.1 异或门4.2 线性和非线性 五&…

机器学习入门好文,强烈推荐

转自 飞鸟各投林 史上最强----机器学习经典总结---入门必读----心血总结-----回味无穷 让我们从机器学习谈起 导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实…

深度学习——人生为数不多的好出路

https://blog.csdn.net/bKMk01MZ3w/article/details/81463602 编者按:本文来自微信公众号“清脑”(ID:QingNao_),作者 周岭。36氪经授权转载。 胡适的英语老师、民国时期自学成才的出版家王云五先生在年轻的时候是这样…