Powered by:NEFU AB-IN
Link
文章目录
- 2222. 迷宫
- 题意
- 思路
- 代码
2222. 迷宫
-
题意
摘要:终点为n,n,存在传送门,代价与走动代价相同,均为1,起点不定,求从初始格子走到终点的最短 步数的期望值是多少
-
思路
两种写法,但都以BFS为基础
- 总体思路:要求求出所有点到终点的距离之和,所以我们反向思考,使用BFS以终点为起点跑遍整个地图,每次到一个新的位置时,此时到达的步数就是从终点到该点的最短步数,反过来也是从该点到终点的最短步数。为什么一定会是最短呢?因为BFS自带最短路效应。至于传送门采用二维坐标压缩至一维坐标,把坐标基准更改为[0, 0],方便取余和整除
- 第一种:采用最短路策略,不用st数组,因为每个坐标可能走多次(当然在第一种思路中已经用st数组回避这个可能了),所以每次就得计算最短花费,dist初始化均为INF
- 第二种:以总体思路为标准,直接BFS,用到dist和st数组,其中dist数组其实可以省略(因其记录的是BFS层数,所以可以边遍历边加)
-
代码
第一种
# import from sys import setrecursionlimit, stdin, stdout, exit from collections import Counter, deque from heapq import heapify, heappop, heappush, nlargest, nsmallest from bisect import bisect_left, bisect_right from datetime import datetime, timedelta from string import ascii_lowercase, ascii_uppercase from math import log, gcd, sqrt, fabs, ceil, floorclass sa:def __init__(self, x, y):self.x = xself.y = ydef __lt__(self, a):return self.x < a.x# Final N = int(2e3 + 10) M = int(5e6 + 10) INF = int(2e9)# Define setrecursionlimit(INF) input = lambda: stdin.readline().rstrip("\r\n") # Remove when Mutiple data read = lambda: map(int, input().split()) LTN = lambda x: ord(x.upper()) - 65 # A -> 0 NTL = lambda x: ascii_uppercase[x] # 0 -> A# —————————————————————Division line ——————————————————————dx = [1, 0, -1, 0] dy = [0, -1, 0, 1]g = [[] for _ in range(M)] dist = [[INF] * N for _ in range(N)]def pos_to_num(x, y):x -= 1y -= 1return x * n + ydef num_to_pos(num):return [num // n + 1, num % n + 1]n, m = read() for i in range(m):x1, y1, x2, y2 = read()g[pos_to_num(x1, y1)].append(pos_to_num(x2, y2))g[pos_to_num(x2, y2)].append(pos_to_num(x1, y1))def bfs(sx, sy):q = deque()q.appendleft(sa(sx, sy))dist[sx][sy] = 0while len(q):t = q.pop()x, y = t.x, t.yfor i in range(4):x1 = x + dx[i]y1 = y + dy[i]if x1 < 1 or x1 > n or y1 < 1 or y1 > n:continueif dist[x1][y1] > dist[x][y] + 1:dist[x1][y1] = dist[x][y] + 1q.appendleft(sa(x1, y1))for num in g[pos_to_num(x, y)]:x1, y1 = num_to_pos(num)if dist[x1][y1] > dist[x][y] + 1:dist[x1][y1] = dist[x][y] + 1q.appendleft(sa(x1, y1))ans = 0bfs(n, n)for i in range(1, n + 1):for j in range(1, n + 1):ans += dist[i][j]print(f'{ans / (n * n):.2f}')
第二种
''' Author: NEFU AB-IN Date: 2023-05-25 15:59:24 FilePath: \LanQiao\2222\2222.1.py LastEditTime: 2023-05-25 16:35:58 ''' # import from sys import setrecursionlimit, stdin, stdout, exit from collections import Counter, deque from heapq import heapify, heappop, heappush, nlargest, nsmallest from bisect import bisect_left, bisect_right from datetime import datetime, timedelta from string import ascii_lowercase, ascii_uppercase from math import log, gcd, sqrt, fabs, ceil, floorclass sa:def __init__(self, x, y, w):self.x = xself.y = yself.w = w# Final N = int(2e3 + 10) M = int(5e6 + 10) INF = int(2e9)# Define setrecursionlimit(INF) input = lambda: stdin.readline().rstrip("\r\n") # Remove when Mutiple data read = lambda: map(int, input().split()) LTN = lambda x: ord(x.upper()) - 65 # A -> 0 NTL = lambda x: ascii_uppercase[x] # 0 -> A# —————————————————————Division line ——————————————————————dx = [0, -1, 0, 1] dy = [-1, 0, 1, 0]g = [[] for _ in range(M)] dist = [[0] * N for _ in range(N)] st = [[0] * N for _ in range(N)]def pos_to_num(x, y):x -= 1y -= 1return x * n + ydef num_to_pos(num):return [num // n + 1, num % n + 1]n, m = read() for i in range(m):x1, y1, x2, y2 = read()g[pos_to_num(x1, y1)].append(pos_to_num(x2, y2))g[pos_to_num(x2, y2)].append(pos_to_num(x1, y1))def bfs(sx, sy):q = deque()q.appendleft(sa(sx, sy, 0))st[sx][sy] = 1while len(q):t = q.pop()x, y, w = t.x, t.y, t.wfor i in range(4):x1 = x + dx[i]y1 = y + dy[i]if x1 < 1 or x1 > n or y1 < 1 or y1 > n or st[x1][y1]:continuest[x1][y1] = 1q.appendleft(sa(x1, y1, w + 1))dist[x1][y1] = w + 1for num in g[pos_to_num(x, y)]:x1, y1 = num_to_pos(num)if st[x1][y1]:continuest[x1][y1] = 1q.appendleft(sa(x1, y1, w + 1))dist[x1][y1] = w + 1ans = 0bfs(n, n)for i in range(1, n + 1):for j in range(1, n + 1):ans += dist[i][j]print(f'{ans / (n * n):.2f}')