题目描述
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
有 �N 件物品和一个容量为 �M 的背包。第 �i 件物品的重量是 ��Wi,价值是 ��Di。求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大。
输入格式
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
第一行:物品个数 �N 和背包大小 �M。
第二行至第 �+1N+1 行:第 �i 个物品的重量 ��Wi 和价值 ��Di。
输出格式
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
输出一行最大价值。
输入输出样例
输入 #1
4 6
1 4
2 6
3 12
2 7
输出 #1
23
代码如下:
#include<cstdio>
int n,m;
int w[3500]={},v[3500]={},dp[20001]={};
int main(){scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&v[i]); for(int i=1;i<=n;i++){for(int j=m;j>=w[i];j--){if(dp[j-w[i]]+v[i]>dp[j]) dp[j]=dp[j-w[i]]+v[i];}}printf("%d",dp[m]);
}