【Redis】Redis分布式锁的10个坑

news/2025/1/12 15:50:29/

文章目录

  • 前言
  • 1. 非原子操作(setnx + expire)
  • 2.被别的客户端请求覆盖( setnx + value为过期时间)
  • 3. 忘记设置过期时间
  • 4. 业务处理完,忘记释放锁
  • 5. B的锁被A给释放了
  • 6. 释放锁时,不是原子性
  • 7. 锁过期释放,业务没执行完
  • 8. Redis分布式锁和@transactional一起使用失效
  • 9.锁可重入
  • 10.Redis主从复制导致的坑
  • 参考与感谢
  • 参考资料

前言

日常开发中,经常会碰到秒杀抢购等业务。为了避免并发请求造成的库存超卖等问题,我们一般会用到Redis分布式锁。但是使用Redis分布式锁,很容易踩坑哦~ 本文将给大家分析阐述,Redis分布式锁的10个坑~

1. 非原子操作(setnx + expire)

一说到实现Redis的分布式锁,很多小伙伴马上就会想到setnx+ expire命令。也就是说,先用setnx来抢锁,如果抢到之后,再用expire给锁设置一个过期时间。

伪代码如下:

if(jedis.setnx(lock_key,lock_value) == 1{ //加锁jedis.expire(lock_key,timeout); //设置过期时间doBusiness //业务逻辑处理
}

这块代码是有坑的,因为setnx和expire两个命令是分开写的,并不是原子操作!如果刚要执行完setnx加锁,正要执行expire设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,别的线程永远获取不到锁啦。

2.被别的客户端请求覆盖( setnx + value为过期时间)

为了解决:发生异常时,锁得不到释放的问题。有小伙伴提出,可以把过期时间放到setnx的value里面。如果加锁失败,再拿出value值和当前系统时间校验一下是否过期即可。伪代码实现如下:

long expireTime = System.currentTimeMillis() + timeout; //系统时间+设置的超时时间
String expireTimeStr = String.valueOf(expireTime); //转化为String字符串// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(lock_key, expireTimeStr) == 1) {return true;
} // 如果锁已经存在,获取锁的过期时间
String oldExpireTimreStr = jedis.get(lock_key);// 如果获取到的老的预期过期时间,小于系统当前时间,表示已经过期了
if (oldExpireTimreStr != null && Long.parseLong(oldExpireTimreStr) < System.currentTimeMillis()) {//锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)String oldValueStr = jedis.getSet(lock_key, expireTimeStr);if (oldValueStr != null && oldValueStr.equals(oldExpireTimreStr)) {//考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁return true;}
}//其他情况,均返回加锁失败
return false;
}

这种实现的方案,也是有坑的:如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖。

3. 忘记设置过期时间

之前review代码的时候,看到这样实现的分布式锁,伪代码:

try{if(jedis.setnx(lock_key,lock_value) == 1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey);- //释放锁
} 

这块有什么问题呢?是的,忘记设置过期时间了。如果程序在运行期间,机器突然挂了,代码层面没有走到finally代码块,即在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁,所以这里需要给lockKey加一个过期时间。注意哈,使用分布式锁,一定要设置过期时间哈。

4. 业务处理完,忘记释放锁

很多小伙伴,会使用Redis的set指令扩展参数来实现分布式锁。

set指令扩展参数:SET key value[EX seconds][PX milliseconds][NX|XX]- NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,而其他客户端请求只能等其释放锁,才能获取。
- EX seconds :设定key的过期时间,时间单位是秒。
- PX milliseconds: 设定key的过期时间,单位为毫秒
- XX: 仅当key存在时设置值

小伙伴会写出如下伪代码:

if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){ //加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回
}
return false; //加锁失败

这块伪代码,初看觉得没啥问题,但是细想,不太对呀。因为忘记释放锁了!如果每次加锁成功,都要等到超时时间才释放锁,是会有问题的。这样程序不高效,应当每次处理完业务逻辑,都要释放锁。

正例如下:

try{if(jedis.set(lockKey, requestId, "NX", "PX", expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey);- //释放锁
}  

5. B的锁被A给释放了

我们来看下这块伪代码:

try{if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {unlock(lockKey); //释放锁
}  

大家觉得会有哪些坑呢?

假设在这样的并发场景下:A、B两个线程来尝试给Redis的keylockKey加锁,A线程先拿到锁(假如锁超时时间是3秒后过期)。如果线程A执行的业务逻辑很耗时,超过了3秒还是没有执行完。这时候,Redis会自动释放lockKey锁。刚好这时,线程B过来了,它就能抢到锁了,开始执行它的业务逻辑,恰好这时,线程A执行完逻辑,去释放锁的时候,它就把B的锁给释放掉了。

正确的方式应该是,在用set扩展参数加锁时,放多一个这个线程请求的唯一标记,比如requestId,然后释放锁的时候,判断一下是不是刚刚的请求。

try{if(jedis.set(lockKey, requestId, "NX", "PX",expireTime)==1){//加锁doBusiness //业务逻辑处理return true; //加锁成功,处理完业务逻辑返回}return false; //加锁失败
} finally {if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestIdunlock(lockKey);//释放锁}   
}  

6. 释放锁时,不是原子性

以上的这块代码,还是有坑:

   if (requestId.equals(jedis.get(lockKey))) { //判断一下是不是自己的requestIdunlock(lockKey);//释放锁}   

因为判断是不是当前线程加的锁和释放锁不是一个原子操作。如果调用unlock(lockKey)释放锁的时候,锁已经过期,所以这把锁已经可能已经不属于当前客户端,会解除他人加的锁。

因此,这个坑就是:判断和删除是两个操作,不是原子的,有一致性问题。释放锁必须保证原子性,可以使用Redis+Lua脚本来完成,类似Lua脚本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
elsereturn 0
end;  

7. 锁过期释放,业务没执行完

加锁后,如果超时了,Redis会自动释放清除锁,这样有可能业务还没处理完,锁就提前释放了。怎么办呢?

有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:
在这里插入图片描述

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程一还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。

8. Redis分布式锁和@transactional一起使用失效

大家看下这块伪代码:

@Transactional
public void updateDB(int lockKey) {boolean lockFlag = redisLock.lock(lockKey);if (!lockFlag) {throw new RuntimeException(“请稍后再试”);}doBusiness //业务逻辑处理redisLock.unlock(lockKey);
}

在事务中,使用了Redis分布式锁.这个方法一旦执行,事务生效,接着就Redis分布式锁生效,代码执行完后,先释放Redis分布式锁,然后再提交事务数据,最后事务结束。在这个过程中,事务没有提交之前,分布式锁已经被释放,导致分布式锁失效

这是因为:

spring的Aop,会在updateDB方法之前开启事务,之后再加锁,当锁住的代码执行完成后,再提交事务,因此锁住的代码块执行是在事务之内执行的,可以推断在代码块执行完时,事务还未提交,锁已经被释放,此时其他线程拿到锁之后进行锁住的代码块,读取的库存数据不是最新的。

正确的实现方法,可以在updateDB方法之前就上锁,即还没有开事务之前就加锁,那么就可以保证线程的安全性.

9.锁可重入

前面讨论的Redis分布式锁,都是不可重入的。

所谓的不可重入,就是当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,会阻塞,不可以再次获得锁。同一个人拿一个锁
,只能拿一次不能同时拿2次。

不可重入的分布式锁的话,是可以满足绝大多数的业务场景。但是有时候一些业务场景,我们还是需要可重入的分布式锁,大家实现分布式锁的过程中,需要注意一下,你当前的业务场景是否需要可重入的分布式锁。

Redis只要解决这两个问题,就能实现重入锁了:

  • 怎么保存当前持有的线程
  • 怎么维护加锁次数(即重入了多少次)

实现一个可重入的分布式锁,我们可以参考JDK的ReentrantLock的设计思想。实际上,可以直接使用Redisson框架,它是支持可重入锁的。

10.Redis主从复制导致的坑

实现Redis分布式锁的话,要注意Redis主从复制的坑。因为Redis一般都是集群部署的:
在这里插入图片描述

如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:

搞多个Redis
master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

在这里插入图片描述

RedLock的实现步骤如下:

  1. 获取当前时间,以毫秒为单位。
  2. 按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  3. 客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)
  4. 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  5. 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于3个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!

参考与感谢

Redis分布式锁失效的场景[1]
redis分布式锁-可重入锁[2]

参考资料

[1]Redis分布式锁失效的场景: https://blog.csdn.net/he247052163/article/details/119413877

[2]redis分布式锁-可重入锁: https://www.cnblogs.com/x-kq/p/14801527.html


http://www.ppmy.cn/news/80532.html

相关文章

【剧前爆米花--爪哇岛寻宝】TCP保证效率,应对特殊情况等相关机制

作者&#xff1a;困了电视剧 专栏&#xff1a;《JavaEE初阶》 文章分布&#xff1a;这是一篇关于网络编程的文章&#xff0c;在这篇文章中我会着重介绍TCP保证效率&#xff0c;应对特殊情况等相关机制&#xff0c;希望对你有所帮助&#xff01; 目录 效率 批量传输 滑动窗口 …

研发工程师玩转Kubernetes——自动扩缩容

在《研发工程师玩转Kubernetes——使用Deployment进行多副本维护》一文中&#xff0c;我们通过Deployment实现了多副本维护——即维持在一个确定数量的副本个数。而在现实场景中&#xff0c;我们往往需要根据服务的压力&#xff0c;采用水平&#xff08;横向&#xff09;扩容的…

jQuery-基本过滤器

<!DOCTYPE HTML> <html> <head> <meta http-equiv"Content-Type" content"text/html; charsetUTF-8"> <title>基本过滤器</title> <style type"text/css"> …

RHCE考试笔记

linux 终端界面调大调小&#xff08;推荐使用外部的终端软件&#xff09; 1&#xff1a;调大 shift ctrl 号 2&#xff1a;调小 ctrl - 号 进入终端&#xff1a;当前用户名主机名 当前工作的目录 #管理员提示符 &#xff01;&#xff1a;localhost是默认的 ~ 当前所在的工作…

OpenCV入门-基于Python

图像入门 1. 创建窗口namedWindow()resizeWindow()destroyAllWindow() 2.显示图像imread()imshow()imwrite()waitKey()flip() 代码演示3.显示视频VideoCapure()对象cap.get()cap.isOpened()cap.read()cap.release() 部分功能代码演示VideoWriter()对象VideoWriter_fourcc()writ…

安卓动画壁纸实战:制作一个星空动态壁纸(带随机流星动画)

前言 在我之前的文章 羡慕大劳星空顶&#xff1f;不如跟我一起使用 Jetpack compose 绘制一个星空背景&#xff08;带流星动画&#xff09; 中&#xff0c;我们使用 Compose 实现了星空背景效果。 并且调用非常方便&#xff0c;只需要一行代码就可以给任意 Compose 组件添加上…

「SQL面试题库」 No_77 每月交易II

&#x1f345; 1、专栏介绍 「SQL面试题库」是由 不是西红柿 发起&#xff0c;全员免费参与的SQL学习活动。我每天发布1道SQL面试真题&#xff0c;从简单到困难&#xff0c;涵盖所有SQL知识点&#xff0c;我敢保证只要做完这100道题&#xff0c;不仅能轻松搞定面试&#xff0…

BigDecimal类型的数据范围判断与加减乘除操作

如何判断BigDecimal类型的数据范围再正负5之间 要判断一个BigDecimal类型的数据是否在正负5之间&#xff0c;你可以使用BigDecimal的compareTo()方法进行比较。 以下是使用Java的BigDecimal类来判断一个数值是否在正负5之间的示例&#xff1a; import java.math.BigDecimal;pu…