什么是生命?演讲原稿

news/2025/1/23 4:05:35/

【原题】WHAT IS LIFE?
【译题】什么是生命 
【作者】ERWIN SCHRODINGER
【题注】作者将1943年于都柏林关于生命的演讲稿发表于次年1944年,以纪念其父母


第一章 古典物理学家对这个主题的探讨

1. 研究的一般性质和目的(The Classical Physicist's Approach to the Subject


这本小册子是一位理论物理学家对大约四百名听众作的一次公开讲演。虽然一开始就指出这是一个难懂的题目,而且即使很少使用物理学家最吓人的数学演绎法这个武器,讲演也不可能是很通俗的,可是听众基本上没有减少(though warned at the outset that the subject-matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized)。其所以如此,并不是由于这个主题简单得不必用数学就可以解释了,而是因为问题太复杂了,以致不能完全用数学来表达(The reason for this was not that the subject was simple enough to be explained without mathematics, but rather that it was much too involved to be fully accessible to mathematics.)。使得讲演至少听上去是通俗化的另一个特点是,讲演者力图把介于生物学和物理学之间的基本概念向物理学家和生物学家讲清楚(the lecturer's intention to make clear the fundamental idea, which hovers between biology and physics, to both the physicist and the biologist)。

实际上涉及的论题是多方面的,但整个任务只是打算说明一个想法——对一个重大的问题的一点小小的评论(the whole enterprise is intended to convey one idea only -one small comment on a large and important question)。为了不迷失我们的方向,预先很扼要地把计划勾画出来也许是有用的。

这个重大的和讨论得很多的问题是:

在一个生命有机体的空间范围内,在空间上和时间上发生的事件,如何用物理学和化学来解释(How can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry)?

这本小册子力求阐明和确立的初步答案概括如下:

当前的物理学和化学在解释这些问题时明显的无能为力,决不是成为怀疑这些事件可以用物理学和化学来解释的理由(The obvious inability of present-day physics and chemistry to account for such events is no reason at all for doubting that they can be accounted for by those sciences)。

2. 统计物理学 结构上的根本差别(STATISTICAL PHYSICS. THE FUNDAMENTAL W DIFFERENCE IN STRUCTURE

如果说过去的碌碌无为只是意味着激起未来获得成功的希望,那未免太轻描淡写了(That would be a very trivial remark if it were meant only to stimulate the hope of achieving in the future what has not been achieved in the past)。它有着更为积极的意义,就是说,迄今为止,物理学和化学的这种无能为力已得到了充足的说明。

今天,由于生物学家,主要是遗传学家在最近三、四十年来的创造性工作,关于有机体的真实的物质结构及其功能的了解已经足以说明,并且是精确地说明现代的物理学和化学为什么还不能解释生命有机体内在空间上和时间上所发生的事件(Today, thanks to the ingenious work of biologists, mainly of geneticists, during the last thirty or forty years, enough is known about the actual material structure of organisms and about their functioning to state that, and to tell precisely why present-day physics and chemistry could not possibly account for what happens in space and time within a living organism.)。

一个有机体的最要害部分的原子排列,以及这些排列的相互作用的方式,跟迄今被物理学家和化学家作为实验和理论对象的所有原子排列是根本不同的(The arrangements of the atoms in the most vital parts of an organism and the interplay of these arrangements differ in a fundamental way from all those arrangements of atoms which physicists and chemists have hitherto made the object of their experimental and theoretical research.)。除了深信物理学和化学的定律始终是统计学的哪些物理学家外,别的人会把我所说的这种根本差别看成是无足轻重的(Yet the difference which I have just termed fundamental is of such a kind that it might easily appear slight to anyone except a physicist who is thoroughly imbued with the knowledge that the laws of physics and chemistry are statistical throughout)。这是因为认为生命有机体的要害部分的结构,跟物理学家或化学家在实验室里、在书桌边用体力或脑力所处理的任何一种物质迥然不同的说法,是同统计学的观点有关的(For it is in relation to the statistical point of view that the structure of the vital parts of living organisms differs so entirely from that of any piece of matter that we physicists and chemists have ever handled physically in our laboratories or mentally at our writing desks.)。因此,要把物理学家或化学家如此发现的定律和规则直接应用到一种系统的行为上去,而这个系统却又不表现出作为这些定律和规则的基础的结构,这几乎是难以想像的。

不能指望非物理学家能理解我刚才用那么抽象的词句所表达的“统计学结构(statistical structure)” 中的差别,更不必说去鉴别这些差别之间的关系了。为了叙述得更加有声有色,我先把后面要详细说明的内容提前讲一下,即一个活细胞的最重要的部分——染色体纤丝——可以恰当地称之为非周期性晶体(the most essential part of a living cell-thechromosome fibre may suitably be called an aperiodic crystal)。迄今为止,在物理学中我们碰到的只是周期性晶体(periodic crystals)。对于一位不高明的物理学家来说,周期性晶体已是十分有趣而复杂的东西了;它们构成了最有魅力和最复杂的一种物质结构,由于这些结构,无生命的自然界已经使得物理学家穷于应付了(To a humble physicist's mind, these are very interesting and complicated objects; they constitute one of the most fascinating and complex material structures by which inanimate nature puzzles his wits)。可是,它们同非周期性晶体相比,还是相当简单而单调的(compared with the aperiodic crystal, they are rather plain and dull)。两者之间结构上的差别,就好比一张是一再重复出现同一种花纹的糊墙纸,另一幅是巧夺天工的刺绣,比如说,一条拉斐尔花毡(Raphael tapestry),它显示的并不是单调的重复,而是那位大师绘制的一幅精致的、有条理的、有意义的图案(which shows no dull repetition, but an elaborate, coherent, meaningful design traced by the great master)。

我把周期性晶体称为他所研究的最复杂的对象之一时,我说的他是指物理学家本身。其实,有机化学家在研究越来越复杂的分子时,已经十分接近于那种“非周期性晶体”了,依我看来,那正是生命的物质载体。因此,有机化学家对生命问题已作出了重大贡献,而物理学家对此几乎毫无作为,也就不足为奇了(therefore it is small wonder that the organic chemist has already made large and important contributions to the problem of life, whereas the physicist has made next to none)。

3. 朴素物理学家对这个主题的探讨(THE NAIVE PHYSICIST'S APPROACH TO THE SUBJECT)

如此简要地说明了我们研究的基本观点——或者不如说是最终的范围——以后,让我来描述一下研究的途径。

首先我打算阐明你可能称之为“一个朴素物理学家关于有机体的观点(a naive physicist's ideas about organisms)”,就是说,一位物理学家可能会想到的那些观点:这位物理学家在学习了物理学,特别是物理学的统计学基础以后,他开始思考有机体的活动和功能的方式时,不免要扪心自问:根据他所学到的知识,根据他的比较简明而低级的科学观点,他能否对这个问题作出一些适当的贡献(the ideas which might arise in the mind of a physicist who, after having learnt his physics and, more especially, the statistical foundation of his science, begins to think about organisms and about the way they behave and function and who comes to ask himself conscientiously whether he, from what he has learnt, from the point of view of his comparatively simple and clear and humble science, can make any relevant contributions to the question)。

结果他是能够作出贡献的(It will turn out that he can)。下一步必须是把他理论上的预见同生物学的事实作比较(compare his theoretical anticipations with the biological facts)。于是,结果将说明他的观点大体上是通情达理的,但需要作一些修正。这样,我们将逐渐接近于正确的观点,或者谦虚点,将接近于我认为是正确的观点。

即使我在这一点上是正确的,我也不知道我的探索道路是否是一条真正的终南捷径(Even if I should be right in this, I do not know whether my way of approach is really the best and simplest)。不过,这毕竟是我的道路。这位“朴素物理学家”就是我自己(The 'naive physicist' was myself)。除了我自己的这一条曲折的道路外,我找不到通往这个目标的捷径(I could not find any better or clearer way towards the goal than my own crooked one.)。

4. 为什么原子是如此之小(Why are atoms so small)?

阐明朴素物理学家的观点的一个好方法是从这个可笑的、近乎是荒唐的问题开始的:为什么原子是如此之小?首先,它们确实是很小的。日常生活中碰到的每一小块物质都含有大量的原子。要使听众了解这个事实,曾经设想过许多例子,但没有比凯尔文勋爵(Lord Kelvin)所用的一个例子能给人以更深刻的印象:假设你能给一杯水中的分子都做上标记,再把这杯水倒进海洋,然后彻底地加以搅拌,使得有标记的分子均匀地分布在全世界的所有海洋中;如果你在任何地方从海洋中舀出一杯水来,你将发现在这杯水中大约有一百个你标记过的分子(Suppose that you could mark the molecules in a glass of water; then pour the contents of the glass into the ocean and stir the latter thoroughly so as to distribute the marked molecules uniformly throughout the seven seas; if then you took a glass of water anywhere out of the ocean, you would find in it about a hundred of your marked molecules)。

原子的实际大小约在黄色光波长(
wave-length of yellow light)的1/50001/2000之间。这个比较是有意义的。因为波长粗略地指出了在显微镜下仍能辨认的最小粒子的大小(The comparison is significant, because the wave-length roughly indicates the dimensions of the smallest grain still recognizable in the microscope)。就拿这么小的颗粒(grain)来说,它还含有几十亿个原子。

那么,为什么原子是如此之小呢(
Now, why are atoms so small)?

这个问题显然是一种遁辞(Clearly, the question is an evasion)。因为这个问题的目的并不是真正在于原子的大小(For it is not really aimed at the size of the atoms)。它关心的是有机体的大小,特别是我们的肉体本身的大小(It is concerned with the size of organisms, more particularly with the size of our own corporeal selves)。当我们以日常的长度单位,比如码或公尺作为量度时,原子确实是很小的。在原子物理学中,人们通常用所谓埃(Angstrom),即一公尺的一百亿分之一(1010 th part of a metre),或以十进位小数计算则是0.0000000001公尺。原子的直径在1到2埃的范围内。日常单位(对它而言,原子是如此之小)同我们身体的大小是密切相关的。有一个故事说,码是起源于一个英国国王的幽默。他的大臣问他采用什么单位,他就把手臂向旁边一伸说:“取我胸部中央到手指尖的距离就行了。”不管它是真是假,这个故事对我们来说是有意义的。这个国王很自然地会指出一个可以同他自己的身体相比较的长度,他知道其他任何东西都将是很不方便的。不管物理学家怎样偏爱“埃”这个单位,但当他做一件新衣服时,他还是喜欢别人告诉他新衣需用六码半花呢,而不是六百五十亿埃的花呢(the physicist prefers to be told that his new suit will require six and a half yards of tweed -rather than sixty-five thousand millions of Angstroms of tweed)。

这样就确定了我们提出的问题的真正目的在于两种长度
——我们身体的长度和原子的长度(two lengths -that of our body and that of the atom——的比例,而原子的长度具有独立存在的无可争辩的优越性,于是,应该这样提问题:同原子相比,我们的身体为什么一定要这么大(Why must our bodies be so large compared with the atom)?

我能够想像到,许多聪明的物理学和化学的学生会对下列引为憾事的,就是说,我们的每一个感觉器官,构成了我们身体上多少是有点重要的部分,因而(从所提到的比例大小来看),它们是由无数原子组成的,这些感觉器官对于单个原子的碰撞来说是过于粗糙了。单个原子我们是看不见,摸不到的(We cannot see or feel or hear the single atoms)。我们关于原子的假说远远不同于我们粗大迟钝的感官所直接发现的东西,而且也不能作直接考察的检验(Our hypotheses with regard to them differ widely from the immediate findings of our gross sense organs and cannot be put to the test of direct inspection)。

一定是那样的吗(Must that be so)?还有没有内在的原因可以解释呢(Is there an intrinsic reason for it)?为了确定并解释为什么感官不合乎自然界的这些定律,我们能从这种事态追溯到某种最重要的原理吗(Can we trace back this state of affairs to some kind of first principle, in order to ascertain and to understand why nothing else is compatible with the very laws of Nature)?

这是物理学家能够完全搞清楚的一个问题(Now this, for once, is a problem which the physicist is able to clear up completely)。对所有提问的回答都是肯定的(The answer to all the queries is in the affirmative)。

5. 有机体的活动需要精确的物理学定律(THE WORKING OF AN ORGANISM REQUIRES EXACT PHYSICAL LAWS

如果有机体的感官不是这么迟钝,而且能敏锐地感觉到单个原子,或者即使是几个原子都能在我们的感官上产生一种可知觉的印象——天哪,生命将象个什么样子呢(If it were not so, if we were organisms so sensitive that a single atom, or even a few atoms, could make a perceptible impression on our senses -Heavens, what would life be like有一点是要着重指出的:可以断言,一个那种样子的有机体是不可能发展出有秩序的思想的(an organism of that kind would most certainly not be capable of developing the kind of orderly thought),这种有秩序的思想在经历了漫长的早期阶段后,终于在许多其他的观念中间形成了关于原子的观念(which, after passing through a long sequence of earlier stages, ultimately results in forming, among many other ideas, the idea of an atom)。

尽管我们单单谈了上面这一点,下述的一些考虑对于大脑和感觉系统以外的各个器官的功能(
the functioning of organs other than the brain and the sensorial system)也是适用的。然而对我们自身来说,最感兴趣的唯一的一件事是:我们在感觉、思维和知觉(we feel and think and perceive)。对于产生思想和感觉的生理过程来说,大脑和感觉系统以外的所有其他器官的功能只是起辅助作用(To the physiological process which is responsible for thought and sense all the others play an auxiliary part),假如我们不是从纯客观的生物学观点来看,至少从人类的观点来看是如此的(at least from the human point of view, if not from that of purely objective biology.)。此外,这将大大有利于我们去拣那种由主观事件紧密伴随着的过程来进行研究,尽管我们对这种紧密的平行现象的真正性质是一无所知的(Moreover, it will greatly facilitate our task to choose for investigation the process which is closely accompanied by subjective events, even though we are ignorant of the true nature of this close parallelism)。其实,据我看来,那是超出了自然科学范围之外的,而且也许是完全超出了人类理解之外的(it lies outside the range of natural science and very probably of human understanding altogether)。

于是,我们面临着下述问题:象我们的大脑这样的器官以及附属于它的感觉系统,为了使它的物理学上的变化状态密切地对应于高度发展的思想,为什么必须由大量的原子来构成呢(
Why should an organ like our brain, with the sensorial system attached to it, of necessity consist of an enormous number of atoms, in order that its physically changing state should be in close and intimate correspondence with a highly developed thought)?大脑及感官,作为一个整体的功能,或是在它直接同环境相互作用的某些外周部分中的功能,跟一台精巧而灵敏到足以反映并记录来自外界的单个原子的碰撞的机器相比,根据什么理由说它们是不相同的呢(On what grounds is the latter task of the said organ incompatible with being, as a whole or in some of its peripheral parts which interact directly with the environment, a mechanism sufficiently refined and sensitive to respond to and register the impact of a single atom from outside)?

理由是,我们所说的思想(
1)它本身是一个有秩序的东西(is itself an orderly thing),(2)只能应用于具有一定程度的秩序的材料,即知觉或经验(can only be applied to material, i.e. to perceptions or experiences, which have a certain degree of orderliness)。这有两种结果。第一,同思想密切对应的躯体组织(如密切对应于我的思想的我的头脑)一定是十分有秩序的组织(a physical organization, to be in close correspondence with thought [as my brain is with my thought) must be a very well-ordered organization],那就意味着在它内部发生的事件必须遵循严格的物理学定律,至少是有高度的准确性(that means that the events that happen within it must obey strict physical laws, at least to a very high degree of accuracy)。第二,外界其他物体对于那个物理学上组织得很好的系统所产生的物理学印象 ( the physical impressions made upon that physically well-organized system by other bodies from outside),显然是对应于相应思想的知觉和经验的,构成了我所说的思想的材料——知觉和经验 ( obviously correspond to the perception and experience of the corresponding thought, forming its material, as I have called it)。因此,在我们的系统和别人的系统之间的物理学上的相互作用,一般来说,它们本身是具有某种程度的物理学秩序 (Therefore, the physical interactions between our system and others must, as a rule, themselves possess a certain degree of physical orderliness),就是说,它们也必须遵循严格的物理学定律并达到一定程度的准确性(they too must obey strict physical laws to a certain degree of accuracy)

6. 物理学定律是以原子统计学为根据的,因而只是近似的(PHYSICAL LAWS REST ON ATOMIC STATISTICS AND ARE THEREFORE ONLY APPROXIMATE

仅由少量原子构成的,对于一个或几个原子的碰撞就已经是敏感的有机体,为什么也还是不能实现上述的一切呢(why could all this not be fulfilled in the case of an organism composed of a moderate number of atoms only and sensitive already to the impact of one or a few atoms only)

因为我们知道,所有的原子每时每刻都在进行着毫无秩序的热运动
(all atoms to perform all the time a completely disorderly heat motion),就是说,这种运动抵消了它们的有秩序的行动,使得发生在少量原子之间的事件不能按照任何已知的定律表现出来(opposes itself to their orderly behaviour and does not allow the events that happen between a small number of atoms to enrol themselves according to any recognizable laws)。只有在无数的原子的合作中,统计学定律才开始影响和控制这些集合体的行为,它的精确性随着包括的原子数目的增加而增加(Only in the cooperation of an enormously large number of atoms do statistical laws begin to operate and control the behaviour of these assemblies with an accuracy increasing as the number of atoms involved increases)。发生的事件就是通过那样的途径获得了真正有秩序的特征(It is in that way that the events acquire truly orderly features)。现已知道,在生命有机体中起重要作用的所有物理学和化学的定律都是这种统计学的定律(All the physical and chemical laws that are known to play an important part in the life of organisms are of this statistical kind);人们所能想到的任何其他种类的规律性和秩序性,总是被原子的不停的运动所扰乱,或是被搞得不起作用(any other kind of lawfulness and orderliness that one might think of is being perpetually disturbed and made inoperative by the unceasing heat motion of the atoms)

7. 它们的精确性是以大量原子的介入为基础的。第一个例子(顺磁性)
 THEIR PRECISION IS BASED ON THE LARGE OF NUMBER OF ATOMS INTERVENING . FIRST EXAMPLE (PARAMAGNETISM)

我想用几个例子来说明这一点。这是从许多例子中随便举出几个,对于初次了解事物的这种状态的读者来说,不一定正好就是他最满意的例子。这里所说的事物的这种状态在现代物理学和化学中是基本的,就象生物学中的有机体是细胞组成的,或天文学中的牛顿定律,甚至象数学中的整数序列
1,2,3,4,5……等基本事实一样。不应该指望一位十足的外行人读了下面几页就能十分理解和领会这个问题,这个问题是同路德维希·玻尔兹曼( Ludwig Boltzmann )和威拉德·吉布斯(Willard Gibbs)的光辉名字联在一起的,在教科书中称之为 统计热力学(statistical thermodynamics)”

如果你在一个长方形的水晶管里充氧,并把它放入磁场,你会发现气体被磁化了
(If you fill an oblong quartz tube with oxygen gas and put it into a magnetic field, you find that the gas is magnetized)。这种磁化是由于氧分子是一些小的磁体,它们象罗盘针似的有着使自己与磁场平行的趋向(The magnetization is due to the fact that the oxygen molecules are little magnets and tend to orientate themselves parallel to the field, like a compass needle)。可是你千万别认为它们全都转向了平行(But you must not think that they actually all turn parallel. )。因为如果你把磁场加倍,氧气中的磁化作用也会加倍,磁化作用随着你用的场强而增加,这种按比例的增加可以达到极高的场强(For if you double the field, you get double the magnetization in your oxygen body, and that proportionality goes on to extremely high field strengths, the magnetization increasing at the rate of the field you apply)

这是纯粹统计学定律的一个特别清楚的例子
(This is a particularly clear example of a purely statistical law)。磁场要产生的取向不断地遭到随机取向的热运动的对抗(The orientation the field tends to produce is continually counteracted by the heat motion, which works for random orientation)。这样斗争的结果,实际上只是使偶极轴同场之间的锐角比钝角稍占优势(The effect of this striving is, actually, only a small preference for acute over obtuse angles between the dipole axes and the field)。虽然单个原子在不断地改变它们的取向,然而平均地来看(由于它们的数量巨大),一种朝着场的方向并与之成比例的取向稍占优势(Though the single atoms change their orientation incessantly, they produce on the average [owing to their enormous number] a constant small preponderance of orientation in the direction of the field and proportional to it )。这一创造性的解释是法国物理学家P. Langevin 作出的。它可以用下面的方法来验证。如果观察到的弱磁化确是对抗趋势的结果( If the observed weak magnetization is really the outcome of rival tendencies),就是说,如果确是梳理了所有分子使之平行的磁场、同随机取向的热运动的对抗趋势的结果(the magnetic field, which aims at combing all the molecules parallel, and the heat motion, which makes for random orientation),那就应该有可能通过减弱热运动来增强磁化作用 (then it ought to be possible to increase the magnetization by weakening the heat motion),即用降低温度来代替加强磁场 ( by lowering the temperature, instead of reinforcing the field)。实验已经证明了这一点,实验结果是磁化与绝对温度成反比,与理论(居里定律 Curie's law)是定量地相符的。现代的设备甚至能使我们通过降低温度把热运动减低到如此的不明显(Modern equipment even enables us, by lowering the temperature, to reduce the heat motion to such insignificance that the orientating tendency of the magnetic field can assert itself),以致能够表现出磁场自己的取向趋势,如果不是完全地表现,至少也足以产生完全磁化(complete magnetization的一个实质性部分。在这种情况下,我们不再指望场强加倍会使磁化加倍;而是随着场的增强,磁化的增强越来越少,接近于所谓的饱和 In this case we no longer expect that double the field strength will double the magnetization, but that the latter will increase less and less with increasing field, approaching what is called 'saturation')。这个预期也定量地被实验所证实了。


8. 第二个例子(布朗运动,扩散)SECOND EXAMPLE (BROWNIAN MOVEMENT, DIFFUSION)

 如果你把微滴组成的雾装进一个密封的玻璃容器的底部,你将发现雾的上面的界限在按一定的速度逐渐下沉(If you fill the lower part of a closed glass vessel with fog consisting of minute droplets, you will find that the upper or boundary of the fog gradually sinks, with a well-defined velocity)。这种速度取决于空气的粘度和微滴的大小和比重(determined by the viscosity of the air and the size and the specific gravity of the droplets)。可是,如果你在显微下注视一粒微滴,你会发现它并不一直以恒定的速度在下沉,而是在作一种十分不规则的运动,即所谓布朗运动(Brownian movement),只有平均地看,这种运动才相当于一种有规则的下沉。

这些微滴并不是原子,可是它们既小又轻,足以感觉到不断碰撞敲击它表面的分子中间单个分子的碰撞
(Now these droplets are not atoms, but they are sufficiently small and light to be not entirely insusceptible to the impact of one single molecule of those which hammer their surface in perpetual impacts.)。它们就是这样地碰撞着,只是从平均来说才服从重力的影响(They are thus knocked about and can only on the average follow the influence of gravity)

这个例子说明,如果我们的感官也能感觉到只是几个分子的碰撞,那我们将会有多么莫名其妙和杂乱无章的经验呀
(This example shows what funny and disorderly experience we should have if our senses were susceptible to the impact of a few molecules only.)。细菌和其他一些有机体是这么小,以致是受到这种现象的强烈影响的(There are bacteria and other organisms so small that they are strongly affected by this phenomenon)。它们的运动是由周围环境中的热的倏忽变动所决定的,它们自己没有选择的余地(Their movements are determined by the thermic whims of the surrounding medium; they have no choice)。如果它们自己有一点动力,它们还是有可能成功地从一处移到另一处,但是这还是有点困难的,因为热运动颠簸着它们,使它们象飘浮在汹涌大海中的一叶扁舟(If they had some locomotion of their own they might nevertheless succeed in on getting from one place to another - but with some difficulty, since the heat motion tosses them like a small boat in a rough sea)


非常类似于布朗运动的一种现象是扩散现象
(A phenomenon very much akin to Brownian movement is that of diffusion)。在一只装满液体,比如装满水的容器中,溶解少量的有色物质,比如高锰酸钾 (potassium permanganate),并使浓度不完全一样。如果你对这个系统放手不管,那么就开始了很缓慢的扩散过程。高锰酸钾将从高浓度的地方向低浓度的地方散布,直到均匀地分布于水中为止。

关于这个简单的、显然不是特别有趣的过程来说,值得注意的是,决不是象人们所想像的那样,是由任何一种趋向或力量驱使高锰酸钾分子从稠密的地区迁到稀疏的地区
(it is in no way due, as one might think, to any tendency or force driving the permanganate molecules away from the crowded region to the less crowded one)——就象一个国家的人口分散到有更多活动余地的地区那样。在高锰酸钾分子那里,根本没有发生那样的事情(Nothing of the sort happens with our permanganate molecules)。每一个高锰酸钾分子对所有其他的高锰酸钾分子来说,是完全独立地行动着,它很少彼此相碰(Every one of them behaves quite independently of all the others, which it very seldom meets.)。可是,每一个高锰酸钾分子,无论是在稠密的地区,还是在空旷的地区,都遭到水分子的不断撞击的同样命运,从而以一种不可预测的方向逐渐地向前移动——有时朝高浓度的方向,有时朝低浓度的方向,有时则是斜刺里移动(Everyone of them, whether in a crowded region or in an empty one, suffers the same fate of being continually knocked about by the impacts of the water molecules and thereby gradually moving on in an unpredictable direction -sometimes towards the higher, sometimes towards the lower, concentrations, sometimes obliquely)。这种运动,常常同蒙住眼睛的人的活动相比拟(The kind of motion it performs has often been compared with that of a blindfolded person)。这个蒙住眼睛的人站在地面上,充满了某种走路的欲望,可是并没有选定任何特定的方向,因而不断地在变动着他的路线(a blindfolded person on a large surface imbued with a certain desire of 'walking', but without any preference for any particular direction, and so changing his line continuously)。

尽管所有的高锰酸钾分子都是这样随机地走动,还是产生了一种有规则的朝低浓度方向的流动,最后造成了均匀的分布,乍看起来,这是令人困惑不解的
——但仅仅是乍看起来而已(That this random walk of the permanganate molecules, the same for all of them, should yet produce a regular flow towards the smaller concentration and ultimately make for uniformity of distribution, is at first sight perplexing -but only at first sight)。如果你把它想像为一层层浓度几乎恒定的薄片,某一瞬间某一薄片所含的高锰酸钾分子(If you contemplate in thin slices of approximately constant concentration, the permanganate molecules which in a given moment are contained in a particular slice will ),由于它们的随机走动,确实将以相等的几率被带到右边或左边去 (by their random walk, it is true, be carried with equal probability to the right or to the left)。但正是由于这一点,一个隔着二块相邻薄片的平面上通过的分子,来自左面的比来自右面的要多,这只是由于左面比右面有更多的分子在从事随机行走的缘故(But precisely in consequence of this, a plane separating two neighbouring slices will be crossed by more molecules coming from the left than in the opposite direction, simply because to the left there are more molecules engaged in random walk than there are to the right)。只要是这种情况,平均将表现为一种自左到右的有规则的流动,直到均匀分布(And as long as that is so the balance will show up as a regular flow from left to right, until a uniform distribution is reached)

把这些想法译成数学语言时,精确的扩散定律可用偏微分方程来表达
(When these considerations are translated into mathematical language the exact law of diffusion is reached in the form of a partial differential equation),我不打算解释这个方程式来麻烦读者,虽然它的含义用普通语言来说也是很简单的(which I shall not trouble the reader by explaining, though its meaning in ordinary language is again simple enough)。这里之所以提到严格的数学上精确的(mathematically exact)”定律,是为了强调它的物理学的精确性在每一项具体应用上一定还会受到挑战的。由于它是以纯机遇为根据的,所以它的正确性只是近似的(Being based on pure chance, its validity is only approximate)。一般地说,如果它是一个极好的近似值,那也只是在扩散现象中有无数分子的合作的缘故(If it is, as a rule, a very good approximation, that is only due to the enormous number of molecules that co-operate in the phenomenon.)。我们要预先考虑到,分子的数目愈少,偶然的偏差就愈大(The smaller their number, the larger the quite haphazard deviations)——在适合的条件下,这是可以观察到的。

要注意的是,这种情况完全依赖于产生可观察的磁化时进行合作的分子的巨大数量(
this behaviour entirely depends on the large numbers of molecules which co-operate in producing the observable magnetization)。否则,磁化就根本不会是恒定的(the latter would not be an constant at all),而将是无时无刻都在十分不规则地变化的(by fluctuating quite irregularly of from one second to the next),成为热运动同场之间相互抗衡消长的见证(bear witness to the vicissitudes of pe the contest between heat motion and field)。基因肯定不是一滴均匀的液体(the gene is most certainly not just a homogeneous drop of liquid),它也许是一个大的蛋白质分子(a large protein molecule),其中分子中的每一个原子,每一个自由基,每一个杂合环都起着各自的作用,同任何一个相似的原子、自由基或环所起的作用,多少是有些不同的(in which every atom, every radical, every heterocyclic ring plays an individual role, more or less different from that played by any of the other similar atoms, radicals, or rings)。总之,这是霍尔顿(Haldane)这些遗传学权威的意见,我们马上就要引用十分接近于证明这种意见的遗传学试验(genetic experiments)。

21. 
不变性(PERMANENCE)


现在让我们转到第二个有重大关系的问题上:在遗传特性上我们碰到的不变性的程度有多大(What degree of permanence do we encounter in hereditary properties)?由此,我们必须把什么东西作为携带它们的物质结构呢 (what must we therefore attribute to the material structures which carry them)

回答这个问题是无需作专门研究的
 ( The answer to this can really be given without any special investigation )。就拿我们谈到了遗传特性这个事实来说,就已经表明我们是承认了不变性几乎是绝对的 (The mere fact that we speak of hereditary properties indicates that we recognize the permanence to be of the almost absolute. )。我们千万不要忘记,父母传给子女的并不是这个或者那个特征 ,比如鹰沟鼻、短手指、患风湿症、血友病、二色眼的倾向等 (For we must not forget that what is passed on by the parent to the child is not just this or that peculiarity, a hooked nose, short fingers, a tendency to rheumatism, haemophilia, dichromasy, etc.)。我们可以很方便地选这些特征来研究遗传规律 (Such features we may conveniently select for studying the laws of heredity.)。可是,这种特征实际上是表现型的整个(四维的)模式 (actually it is the whole [four dimensional ] pattern of the 'phenotype' ),是个体的可见的、一目了然的性质 (the all the visible and manifest nature of the individual ),它们没有什么明显的改变而被复制了好几代,它们在几个世纪里是不变的(which is reproduced without appreciable change for generations, permanent within centuries )——虽然不能说是几万年不变 (though not within tens of thousands of years )——在每次传递中,负载它们的是结合生成受精卵的两个细胞的物质结构 (borne at each transmission by the material in a structure of the nuclei of the two cells which unite to form the fertilized egg cell )

那真是个奇迹。只有一个奇迹更伟大;这个更伟大的奇迹如果同我们所说的奇迹是密切有关的话,那也是在不同水平上的奇迹(
That is a marvel -than which only one is greater; one that, if intimately connected with it, yet lies on a different plane)。我指的是这个事实:我们的全部存在,完全是依靠这种奇迹的奇妙的相互作用,但我们是有能力去获得有关这种奇迹的许多知识的(we, whose total being is entirely based on a marvellous interplay of this very kind, yet if all possess the power of acquiring considerable knowledge about it )。比如,上面讲到的大麦的第一次收获中,会出现少量的麦穗的麦芒长度大大超过了变异范围,比如说是完全无芒。它们可以代表一种德弗里斯突变,并将生育出一模一样的后代,就是说,它们的所有后代全都是无芒的。

因此,突变肯定是因此宝库中的一种变化,而且必须用遗传物质中的某些变化来说明它 (Hence a mutation is definitely a change in the hereditary without treasure and has to be accounted for by some change in the hereditary substance)。实际上,向我们揭示了遗传机制的重要繁育试验 (Actually most of the important breeding experiments, which haverevealed to us the mechanism of by a heredity ),绝大多数就是按照一个预定的计划把突变的(或者,在很多情况下是多突变的)个体同未突变的或不同突变的个体杂交,尔后仔细分析杂交后代(consisted in a careful analysis of the offspring obtained by crossing, according to a preconceived plan, mutated [or, in many cases, multiply mutated] with non-mutated or with differently mutated individuals)。另一方面,由于突变繁育模样相同的后代 (by virtue of their breeding true),所以突变是达尔文描述的、通过不适者淘汰、最适者生存而产生物种的自然选择的合适材料 (mutations are a suitable material on which natural selection may work and produce the species as described by Darwin, by eliminating the unfit and letting the fittest survive)。在达尔文的学说里,你恰恰必须用突变('mutations')”来代替他的细微的偶然变异(slight accidental variations)”(正如在量子论中用量子跃迁[quantum jump]”来代替 “能量的连续转移 [continuous transfer of energy] ”),如果我是正确地表述了大多数生物学家所持的观点,那么,达尔文学说的其他方面是不需要作什么修改的 (In all other respects little change was necessary in Darwin's theory, that is, if I am correctly interpreting the view held by the majority of biologists)

24. 定位。隐性和显性(LOCALIZATION, RECESSIVITY AND DOMINANCE)

现在我们再稍为教条式地对突变的一些其他的基本事实和概念作一番评论 (review some other fundamental facts and notions about mutations, again in a slightly dogmatic manner),而不是直接地说明它们是怎样一个接一个地来源于实验的证据 (without showing directly how they spring, one by one, from the experimental evidence)。

我们可以认为,一个确实观察到的突变,是一条染色体在一定区域内的一个变化所引起的 (a definite observed mutation to be caused by a change in a definite region in one of the chromosomes )。 它确是如此。我们很肯定地知道这只是一条染色体里的一个变化 ,在同源染色体的对应的“位点(locus)”上并没有发生变化,说明这一点是很重要的( It is important to state that we know definitely, that it is a change in one chromosome only, but not in the corresponding 'locus' of the homologous chromosome indicates this schematically, the cross denoting the mutated a locus )。当突变个体(通常称为“突变体mutant”)同一个非突变个体杂交时,事实表明只有一条染色体受到影响 。因为后代中正好有一半显现出突变体的性状,另一半则是正常的( For exactly half of the offspring exhibit the mutant character and half the normal one )。那是可以预期的,是突变体减数分裂时两条染色体分离的结果 (a consequence of the separation of the two chromosomes on meiosis in the mutant )。要知道,如果突变体的两条染色体都受到影响,那么,它的子女全都会得到同一种(混合的)遗传性,这是既不同于他们的父亲,也不同于他们的母亲的遗传性 (Please realize that if the mutant had both its chromosomes affected, all the children would receive the same [mixed] inheritance, different from that of either parent.)。

可是,在这个领域里进行实验可不象我们刚才说的那么简单 (But experimenting in this domain is not as simple as would appear from what has just been said )。它由于第二个重要事实,即由于突变经常是潜在的(mutations are very often latent) 而变得复杂化了。这是什么意思呢 (What does that mean)?

在突变体里,两份遗传密码本的副本不再是完全一样了(In the mutant the two copies of the code-script are no longer identica);不管怎样,在突变的地方是两个不同的“读本”或“译本”了。也许应该立即指出的是,有时会想到把原始的译本看作是“正统的(orthodox)”,把突变体译本看作是“异端的(heretic)”,那是完全错误的( Perhaps it is well to point out at once that, while it might be tempting, it would nevertheless be entirely wrong to regard the original version as 'orthodox', and the mutant version as 'heretic'.)。原则上,我们必须认为它们的存在是有同等权利的 (We have to is regard them, in principle, as being of equal right )——因为正常的性状也是起源于突变的(for the normal characters have also arisen from mutations.)。

一般说来,实际上发生的是,个体的“模式”不是仿效这个译本,便是仿效另一个译本,这些译本可以是正常的,也可以是突变的 (What actually happens is that the 'pattern' of the individual, as a general rule, follows either the one or the other rte version, which may be the normal or the mutant one.)。被仿效的译本叫做显性 ,另一个则叫做隐性(The version which is followed is called dominant, the other, recessive );换句话说,根据突变是否直接影响到模式的改变,称之为显性突变或隐性突变 (the mutation is called dominant or recessive, according to whether it is immediately effective in changing the pattern or not)。

隐性突变甚至比显性突变更频繁,而且是十分重要的,尽管一开始它一点也不表现出来 (Recessive mutations are even more frequent than dominant ones and are very important, though at first they do not show up at all )。一定要在两条染色体上都出现了隐性突变才会影响到模式 ( To affect the pattern, they have to be present in both chromosomes )。当两个等同的隐性突变体相互杂交,或一个突变体自交时,就能产生这样的个体 ( Such individuals can be produced when two equal recessive mutants happen to be crossed with each other or when a mutant is crossed with itself );这在雌雄同株的植物里是可能的,甚至是自发产生的。只要稍微注意一下就可看到,在这种情况下,后代中大约有四分之一是属于这种类型的,而且明显地表现出突变的模式

25. 介绍一些术语(INTRODUCING SOME TECHNICAL LANGUAGE)

为了讲清楚问题,我想在这里解释一些术语 (I think it will make for clarity to explain here a few technical terms)。因为当我讲到“密码本的译本 ( version of the code-script)”—— 原始的译本或突变体的译本时,已经用了“等位基因(allele) ”这一术语了。在译本不同时,就那个位点而言,这个个体是杂合的(When the versions are different, the individual is called heterozygous, with respect to that locus)。假如它们是等同的,例如非突变个体,则叫做纯合的。这样,只有当它是纯合的时候,一个隐性的等位基因才会影响到模式(Thus a recessive allele influences the pattern only when homozygous)。可是一个显性的等位基因,不管它是纯合的,或者只是杂合的,都产生相同的模式(whereas a dominant allele produces the same pattern, whether homozygous or only heterozygous)。

有色对于无色(或白色)来讲,往往是显性。比如,豌豆只有在它的两个有关的染色体里都存在 “负责白色的隐性等位基因(recessive allele responsible for white)” 时候,也就是在它是“对白色纯合的(homozygous for white)”时候,才会开白花;于是它将繁育同样的后代,它们的后代全部是开白花的。可是,一个“红色等位基因(red allele)”(另一个基因是白色的,也就是“杂合的”)就会使它开红花。两个红色等位基因(“纯合的”)也是开红花。后面这两种情况的区别,只是在后代中才显露出来,因为杂合的红色会产生一些开白花的后代,纯合的红色将只产生开红花的后代(The difference of the latter two cases will only show up in the offspring, when the heterozygous red will produce some white descendants, and the homozygous red will breed true)。

由于“两个个体在外观上可能十分相似,但它们的遗传性却不相同(two individuals may be exactly alike in their outward ppearance, yet differ in their inheritance)”这个事实是如此重要,所以需要严格地予以区分。遗传学家的说法是它们具有相同的表现型,但遗传型是不同的(they have the same phenotype, but different genotype)。于是,前面几节的内容可以作这样简短但非常专门的概括:

只有当遗传型是纯合的时候,隐性等位基因才能影响表现型(A recessive allele influences the phenotype only when the genotype is homozygous)。

我们偶而会用到这些专门性的说法,必要时将再向读者说明其含义。

26. 近亲繁殖的有害效应(THE HARMFUL EFFECT OF CLOSE-BREEDING)

隐性突变只要它们是杂合的,自然选择对它们当然是不起作用的(Recessive mutations, as long as they are only heterozygous, are of course no working-ground for natural selection)。如果它们是有害的,因为突变通常都是有害的,由于它们是潜在的,所以它们是不会被消除的(If they are detrimental, as mutations very often are, they will nevertheless not be eliminated, because they are latent.)。因此,大量的不利突变可以积累起来而并不立即造成损害(Hence quite a host of unfavourable mutations may accumulate and do no immediate damage.)。可是,它们一定会传递给后代中的半数个体(But they are, of course, transmitted to that half of the offspring),这对人、家畜、家禽或我们直接关心其优良体质的任何其他物种来说,都是非常适用的(that has an important application to man, cattle, poultry or any other species, the good physical qualities of which are of immediate concern to us)。假如一个男人(说具体些,比如我自己)是以杂合的状态带有这样的一个隐性有害突变,所以它没有表现出来(carries such a recessive detrimental mutation heterozygously, so that it does not show up)。假如我的妻子没有这种突变(Assume that my wife is free of it)。于是,我的子女中将有半数也会带有这种突变,而且也是杂合的(Then half of our children will also carry it -again heterozygously)。倘若他们同非突变的配偶结婚,那么,在我们的孙儿女中,平均有四分之一将以同样的方式受到突变的影响(If all of them are again mated with non-mutated partners, a quarter of our grandchildren, on the average, will be affected in the same way)。

除非受到同样效应的个体彼此杂交,否则有害的危险始终不会明显地表现出来(No danger of the evil ever becoming manifest arises, unless of equally affected individuals are crossed with each other )。但只要稍微注意一下就可看到,当他们的子女中有四分之一是纯合的时候,危害性就表现出来了(when, as an easy reflection shows, one-quarter of their children, being homozygous, would manifest the damage)。仅次于自体受精的(只有雌雄同体的植物才有此可能)最大的危险是我的儿子同我的女儿结婚(the greatest danger would be a marriage between a son and a daughter of mine)。他们中间的每一个人受或不受潜在的效应的机会是相等的,这种乱伦的结合中有四分之一将表现出伤害(Each of them standing an even chance of being latently affected or not, one-quarter of these incestuous unions would be dangerous inasmuch as one-quarter of its children would manifest the damage)。因此,对于乱伦生下来的一个孩子来说,危险因子是1:16(The danger factor for an incestuously bred child is thus 1: 16)。

同样地,我的两个(“纯血缘的clean-bred”)孙儿女,即堂、表兄妹之间结婚生下的后代的危险因子是1:64(In the same way the danger: factor works out to be 1 :64 for the offspring of a union between two ['clean-bred'] grand- children of mine who are first cousins)。这种机会看上去并不太大,而且第二种情况事实上常常是容许的 (These do not seem to be but overwhelming odds, and actually the second case is usually tolerated)。可是不要忘了我们已经分析过的、在祖代配偶的一方(“我和我的妻子”)带有一个可能的潜在损伤的后果 ( But do not forget that we have analysed the consequences of only one possible latent injury in one partner of the ancestral couple )。事实上,他们两人藏匿的这种潜在的缺陷都不止一个 (Actually both of them are quite likely to harbour more than one latent deficiency of this kind)。如果你知道自己藏匿着一个缺陷,那么,就可以推算出,在你的八个堂、表兄妹中间,有一个也是带有这种缺陷的 (If you know that you yourself harbour a definite one, you have to reckon with l out of 8 of your first cousins sharing it )!根据动植物的实验来看,除了一些严重的、比较罕见的缺陷外,还有很多较小的缺陷,产生这些缺陷的机遇加在一起就会使得整个近亲繁殖的后代衰退恶化(Experiments with plants and animals seem to indicate that in addition to comparatively rare deficiencies of a serious kind, there seem to be a host of minor ones whose chances combine to deteriorate the offspring of close-breeding as a whole)。我们既然不想用斯巴达人在泰杰托斯山经常采用的残暴方式去消灭失败者 ( Since we are no longer inclined to eliminate failures in the harsh way the Lacedemonians used to adopt in the Taygetos mountain),那么,我们必须采取特别严肃的观点,来看待在人类中发生的这些事情 ( we have to take a particularly serious view about these things in the case of man );在人类中,对最适者生存的自然选择是大大地减少了,不,简直是转向了反面 (in the case of man, were natural selection of the fittest is largely retrenched, nay, turned to the contrary)。战争,在原始状态下还具有使最适合的部落生存下去的、积极的选择价值 ;现代大量屠杀各国的健康青年的反选择效应,连这一点理由也没有了 ( The anti-selective effect of the modern mass slaughter of the healthy youth of all nations is hardly outweighed by the consideration that in more primitive conditions war may have had a positive value in letting the fittest survive )。


27. 一般的和历史的陈述(GENERAL AND HISTORICAL REMARKS)

隐性等位基因在杂合时完全被显性等位基因所压倒,它一点也不产生出可见的效应(the recessive allele, when heterozygous, is completely overpowered by the dominant and produces no visible effects at all,),这一事实是令人惊异的。至少应该说这种情况是有例外的(It ought at least to mentioned that there are exceptions to this behaviour)。当纯合的白色金鱼草,与同样是纯合的深红色的金鱼草杂交时,所有的直接后代的颜色都是中间型的(When a homozygous white snapdragon is crossed with, equally homozygous, crimson snapdragon, all the immediate descendants are intermediate in colour),即是粉红色的(不是预期的深红色的)。血型是两个等位基因同时显示出它们各自影响的更重要的例子(two alleles exhibiting their influence simultaneously occurs in blood-groups),但我们不能在这里进行讨论了。如果最后弄清楚隐性是可以分成若干种不同程度的,并且这是取决于我们用来检查“表现型”的试验的灵敏度,对此,我是不会感到奇怪的(I should not be astonished if at long last recessivity should turn our to be capable of degrees and to depend on the sensitivity of the tests we apply to examine the ‘phenotype’)。

这里也许得讲一下遗传学的早期历史(This is perhaps the place for a word on the early history of genetics)。这个理论的主题,即关于亲代的不同特性在连续世代中的因此规律(the law of inheritance, to successive generations, of properties in which the parents differ ),尤其是关于显隐性的重要区别(more especially the important distinction recessive-dominant),都应归功于现在闻名于世的奥古斯汀教派的修道院长G.孟德尔(now world famous Augustininan Abbot Gregor Mendel)(1822-1884)。孟德尔对突变与染色体是一无所知的(Mendel knew nothing about mutations and chromosomes)。他在布隆(布尔诺)的他的修道院花园中用豌豆作试验(In his cloister gardens in Brunn [ Brno] he made experiments on the garden pea)。在试验中,他栽种了不同品种的豌豆,让它们杂交并注意观察它们的第一代、第二代、第三代……等后代 (of first which he reared different varieties, crossing them and watching their offspring in the 1st, 2nd, 3rd, ..., generation)。你可以说,他是在利用他所找到的自然界中现成的突变体做试验 ( he experimented with mutants which he found ready-made in nature)。早在1868年他就把试验结果发表在《布隆自然研究者协会会报》(Proceedings of the Naturforschender Verein in Brunn)上。当时,对于这个修道士的癖好,没有人特别感到兴趣 (Nobody seems to have been particularly interested in the abbot's hobby);而且,确实也没有人想到他的发现,在二十世纪竟会成为一个全新的科学分支的指路明星,成为当今最感兴趣的学科(and nobody, certainly, had the faintest idea that his discovery would in the twentieth century become the lodestar of an entirely new branch of science, easily the most interesting of our days)。他的论文被人遗忘了(His paper was forgotten),直到1900年才同时被科伦斯(柏林),德弗里斯(阿姆斯特丹)和切玛克(维也纳)三人( by Correns [Berlin], de Vries [Amsterdam] and Tschermak may [Vienna] )各自分别地重新发现。


28. 突变作为一种罕有事件的必要性(THE NECESSITY OF MUTATION BEING A RARE EVENT)

迄今为止,我们的注意力集中在有害的突变上,这种突变可能是更多一些 (So far we have tended to fix our attention on harmful mutations, which may be the more numerous);但必须明确指出,我们的确也碰到过一些有利的突变 (but it must be definitely stated that we do encounter advantageous mutations as well )。如果说自发突变是物种发展道路上的一小步 ( If a spontaneous mutation is a small step in the development of the species ),那么,我们得到的印象是( we get the impression that),有些变化是以偶然的形式、冒着可能是有害的因而会被自动消除的风险而作出的“尝试” (some change is 'tried out' in rather a haphazard fashion at the risk of its being injurious, in which case it is automatically eliminated)。由此引出了十分重要的一点 (This brings out one very important point )。突变要成为自然选择的合适材料 (In order to be suitable material for the work of natural selection),必须是象它的实际情况那样地是罕有的事件 ( mutations must be rare events, as they actually are)。如果突变是如此地经常,以致有很多的机会,比如说,在同一个体内出现了一打不同的突变,而有害的突变又通常比有利的突变占优势 (If they were so frequent that there was a considerable chance of, say, a dozen of different mutations occurring in the same individual, the injurious ones would, as a rule, predominate over the advantageous ones and the species),那末,物种非但不会通过选择得到改良,反而会停滞在没有改良的地步,甚至会消亡 ( instead of being improved by selection, would remain unimproved, or would perish )。基因的高度不变性造成的相当程度的保守性是十分必要的 ( The comparative conservatism which results from the high degree of permanence of the genes is essential The comparative conservatism which results from the high degree of permanence of the genes is essential )。从一个大型制造厂的经营中可以找到一种类比 ( An analogy might be sought in the working of a large manufacturing plant in a factory )。工厂为了创造更好的生产方法,即使是还没有得到确证的革新,也是必须加以试验的 ( For developing better methods, innovations, even if as yet unproved, must be tried out )。可是,为了确定这些革新究竟是改进生产还是降低生产( But in order to ascertain whether the innovations improve or decrease the output ),有必要在一段时间内只采用一项革新,在此期间,该厂的其余部分仍保持不变 (it is essential that they should be introduced one at a time, while all the other parts of the mechanism are kept constant.)。


29. X射线诱发的突变( Mutations Induced by X-Rays )

现在我们得回顾一下遗传学的一系列最巧妙的研究,这些研究将证明在我们的分析中最关紧要的那些特性 ( We now have to review a most ingenious series of genetical research work, which will prove to be the most relevant feature of our analysis )。

后代中出现突变的百分比,也就是所谓的突变率 (mutation rate),可以用X射线或伽玛射线照射亲代而使它比很低的自然突变率增高好几倍 (can be increased to a high multiple of the Small natural mutation rate by irradiating the parents with X-rays or γ-rays)。这种方式产生的突变(除了数量较多外)同自然发生的那些突变并没有什么两样 (The mutations produced in this way differ in no way [ except by being more numerous ]from those occurring spontaneously ),因而人们有这样的印象,认为每一种“自然”突变也可以用X射线来诱发产生 ( one has the impression that every ‘natural’ mutation can also be induced by X-rays )。在大量培育的果蝇中间,一再自发地产生了许多特殊的突变 ( In Drosophila many special mutations recur spontaneously again and to you again in the vast cultures );如第18节所说的,它们已在染色体上定位,并给了专门的名称 ( they have been located in the chromosome, as described *** and have been given special names)。甚至还发现了所谓“复等位基因 (multiple alleles) ”,就是说,在染色体密码的同一位置上,除了正常的非突变的一个“读本”或“译本”之外,还有两个或两个以上不同的“译本”或“读本” (two or more different 'versions' and 'readings' -in addition to the normal, non-mutated one -of the same place in the chromosome code);这意味着在那个具体的“位点”里,不仅有两个而且有三个或更多个交替,当它们同时出现在两条同源染色体上的它们的相应位点时,其中任何二个“译本”之间都彼此有“显隐性”的关系 ( that means not only two, but three or more alternatives in that particular one 'locus', any two of which are to each other in the relation 'dominant-recessive' when they occur simultaneously in their corresponding loci of the two homologous chromosomes)。

X射线产生突变的实验给人的印象是,每一个具体的“转变”,比如说,从正常的个体变成一个特殊的突变体,或者是反过来,都有它自己的“X射线系数”,这个系数指出了:在子代出生以前,一个单位剂量的X射线照射亲体后,由于射线而产生突变的后代的百分数。


30. 第一法则。突变是个单一事件(FIRST LAW. MUTATION IS A SINGLE EVENT)

控制诱发突变率的法则是极其简单和极有启发的 (the laws governing the induced mutation rate are extremely simple and extremely illuminating)。这里,我是根据刊载在1934年的《生物学评论》(Biological Reviews) 第九卷上的铁摩菲也夫( N. W. Timofeeff )的报告。这篇报告在很大程度上是引用了该作者自己的漂亮的工作(To a considerable extent it refers to that author's own beautiful work.)。第一法则是:

(1)突变的增加是严格地同射线剂量成正比例的 ( The increase is exactly proportional to the dosage of rays ) ,因而人们确实可以说是(就象我所说的)增加的系数 (a coefficient of increase)。

我们对于简单的比例已习以为常了,因而往往会低估这一简单法则的深远后果 ( We are so used to simple proportionality that we are liable to underrate the ar-reaching consequences of this simple law )。为了理解这一点,就举个例子来说,我们也许会想到一种商品的单价同商品的并不总是成比例的 ( the price of a commodity, for example, is not always proportional to its amount )。平时,一个店主由于你已经向他买了六个橘子,所以当你决定再要买一打橘子时,他也许会感动地以低于十二个橘子的价钱卖给你。当货源不足时,就可能发生相反的情形。在目前情况下,我们可以断言,当辐射的第一个一半剂量 (the first half-dosage of radiation),比如说,引起了千分之一的后代发生突变时(while causing, say, one out of a thousand descendants to mutate ),对其余的后代是毫无影响的,既不使它们倾向于突变,也不使它们免于突变 (has not influenced the rest at all, either in the way of predisposing them for, or of immunizing them against, mutation)。不然的话,第二个一半剂量就不会正好是再引起千分之一的后代发生突变 (For otherwise the second half-dosage would not cause again just one out of a thousand to mutate )。因此,突变并不是由连续的小剂量辐射相互增强而产生的一种积累效应 ( Mutation is thus not an accumulated effect, brought about by consecutive small portions of radiation reinforcing each other )。突变一定是在辐射期间发生在一条染色体中的单一事件所产生的 ( It must consist in some single event occurring in one chromosome during irradiation)。那么,这是哪一类事件呢 (What kind of event) ?

31. 第二法则。事件的局限性(SECOND LAW. LOCALIZATION OF THE EVENT)

这个问题由第二法则来回答,这就是(2):如果你广泛地改变射线(波长)的性质 (If you vary the quality of the rays [ wave-length ] ),从软的X射线到相当硬的伽玛射线 (from soft X-rays to fairly hard γ-rays),系数仍保持不变 (the coefficient remains constant ),只要你给予以所谓伦琴单位计算的同一剂量 (provided you give the same dosage in so-called r-units),也就是说,你用的剂量按照在照射期间,亲体受到照射的那个地方 (during the time and at the place where the parents are exposed to the rays ),在经过选择的标准物质的单位体积内所产生的离子总数来计算的(measure the dosage by the total amount standard substance )。


我们之所以选择空气作为标准物质不仅是为了方便 (As standard substance one chooses air not only for convenience),而且是因为有机组织是由平均原子量与空气相同的元素组成的 ( but also for the reason that organic tissues are composed of elements of the same atomic weight as air )。只要将空气中的电离数乘以密度比 (by multiplying the number of ionizations in air by the ratio of the densities),就可得出组织内电离作用或类似过程(激发)总数的下限 ( A lower limit for the amount of ionizations or allied processes [ excitations] in the tissue is obtained simply )。这是很清楚的,而且已被更关键性的研究所证实,即“引起突变的单一事件正是在生殖细胞的某个临界体积内发生的电离作用(或类似的过程)(the single event, causing a mutation, is just an ionization [ or similar process] occurring within some 'critical' volume of the germ cell)”。这种临界体积有多大呢 ( What is the size of this critical volume) ?它可以根据观察到的突变率,按照这样的考虑来作出估计 ( It can be estimated from the observed mutation rate by a consideration of this kind),即如果每立方厘米产生50000个离子的剂量,使得任何一个配子(它们是在照射的区域里的)以那种特定的方式发生突变的机会只是1:1000 ( if a dosage of 50,000 ions per cm3produces a chance of only 1:1000 for any particular gamete [ that finds itself in the irradiated district] to mutate in that particular way ),那么,我们就可断定那个临界体积,即电离作用要引起突变所必须击中的体积只有1/50000立方厘米的1/1000 ,就是说,只有五千万分之一立方厘米 ( the critical volume, the 'target' which has to be 'hit' by an ionization for that mutation to occur, is only 1/1000 of 1/50000 of a cm3, that is to say, one fiftymillionth of a cm3 )。这不是个准确的数字,只是用来说明问题而已 ( The numbers are not the right ones, but are used only by way of illustration )。在实际估计时,我们是按照M.德尔布吕克 (Delbruck, N.W) 的估计,这是德尔布吕克、铁摩菲也夫(Timofeeff )和齐默尔 (K.G. Zimmer)写的一篇论文中提出的,这篇论文也是将在后面两章详细说明的学说的主要来源。他得出的体积只有大约十个平均原子距离的一个立方体 (a size of only about ten average atomic distances cubed),只包括大约1000个原子。这个结果的最简单的解释是这样的,如果在距离染色体上某个特定的点不超过十个原子距离的范围内发生了一次电离(或激发),就有产生突变的一次机会(there is a fair chance of producing that mutation when an ionization (or excitation) occurs not more than about '10 atoms away' from some particular spot in the chromosome)。我们现在更详细地来讨论这一点

铁摩菲也夫的报告包含了一个有实际意义的暗示,我在这里不能不说一下,当然,跟我们现在的研究可能没有什么关系(The Timofeeff report contains a practical hint which I cannot refrain from mentioning here, though it has, of course, no bearing on our present investigation )。在当前的生活中,人们有很多机会遭到X射线的照射(There are plenty of occasions in modern life when a human being has to be exposed to X-rays)。这就包含了诸如烧伤,X射线癌,绝育等直接的危险,这是大家都知道的,现在已用铅屏,铅围裙等作为防护,特别是给经常接触射线的护士和医生门提供了防护(The direct dangers involved, as burns, X-ray cancer, sterilization, are well known, and protection by lead screens, leadloaded aprons, etc., is provided, especially for nurses and doctors who have to handle the rays regularly)。可是,问题在于,即使是成功地防止了这些迫在眉睫的、对个人的危险时(even when these imminent dangers to the individual are successfully warded off ),也还存在着生殖细胞里产生细微而有害的突变的间接危险(there appears to be the indirect danger of small detrimental mutations being produced in the germ cells)--这就是我们在讲到近亲繁殖的不良后果时所面临的那种突变(mutations of the kind envisaged when we spoke of the unfavourable results of close-breeding)。说得过分些,也许还带点天真,嫡堂、表兄妹结婚的害处,极其可能因为他们的祖母长期当了X射线护士而有所增加。对任何一个个人来说,是不必为此而担忧的。但对社会来说,这种要不得的潜在突变逐渐影响人类的任何可能性,都是应该关注的。


第四章 量子力学的证据(The Quantum-Mechanical Evidence)

32. 古典物理学无法解释的不变性 (Permanence Unexplainable by Classical Physics)


借助于X射线的精密仪器 (aided by the marvellously subtle instrument of X-rays)(物理学家会记得,这种仪器在三十年前揭示了晶体的详细的原子晶格结构 [revealed thirty years ago really the detailed atomic lattice structures of crystals]),在生物学家和物理学家的共同努力下 ( the united efforts of biologists and physicists),最近已成功地把负责个体的某一宏观特性的显微结构的体积-- “基因的体积(size of a gene ) ”--的上限降低了,并且降低到远远低于第19节得出的估计数 (译注:19节中估计基因的体积是,边长为300埃的一个立方体 )。我们现在严肃地面临着的问题是:从统计物理学的观点来看,基因结构似乎只包含了很少量的原子(一般是一千个,也可能还要少)可是它却以奇迹般的不变性表现了最有规律的活动,我们如何使这两方面的事实协调起来呢(How can we, from the point of view of statistical physics, reconcile the facts that the gene structure seems to involve only a comparatively small number of atoms [ of the order of 1,000 and possibly much less], and that value nevertheless it displays a most regular and lawful activity - with a durability or permanence that borders upon the miraculous)?

让我再一次把这种确实令人惊奇的情况说得形象化些 (Let me throw the truly amazing situation into relief once again)。哈布斯堡王朝 ( Habsburg dynasty ) 的一些成员有一种特别难看的下唇(哈布斯堡唇[Habsburger Lippe])。在王室的赞助下,维也纳皇家学院仔细地研究了它的遗传,并连同完整的历史肖像一并发表了( Its inheritance has been studied carefully and published, complete with historical portraits, by the Imperial Academy In Vienna, under the auspices of the family )。已证明这种特征是正常唇形的一个真正的孟德尔式的等位基因” (The feature proves to be a genuinely Mendelian 'allele' to the normal form of the lip )。如果我们注意到十六世纪时该家族中一个成员的肖像 ,和他的生活在十九世纪的后代的肖像 (Fixing our attention on the portraits of a member of the family in the sixteenth century and of his descendant, living in the nineteenth, ),我们完全可以肯定,决定这种畸形特征的物质性的基因结构,已经世代相传经历了几个世纪,每一代之间细胞分裂的次数不是很多的,可是每一次细胞分裂都忠实地复制了 (the material gene structure, responsible for the abnormal feature, has been carried on from generation to generation through the centuries, faithfully reproduced at every one of the not very numerous cell divisions that lie between )。此外,这个基因结构所包含的原子数目很可能同X射线试验测得的原子数目是同一个数量级 ( Moreover, the number of atoms involved in the responsible gene structure is likely to be of the same order of magnitude as in the cases tested by X-rays ) 。在所有时间里,基因保持华氏98度左右的温度 ( The gene has been kept at a temperature around 98°F during all that time)。它能够不受热运动的无序趋向的干扰保持了几个世纪,这一点我们又如何理解呢 ( How are we to understand that it has remained unperturbed by the disordering tendency of the heat motion for centuries) 

上世纪末的一位物理学家,如果他只打算根据他所能解释的、他真正理解的那些自然界的定律去解释这个问题,他将是一筹莫展的 (A physicist at the end of the last century would have been at a loss to answer this question, if he was prepared to draw only on those laws of Nature which he could explain and which he really understood )。在对统计学的情况稍加考虑以后 (a short reflection on the statistical situation ),他也许会作出回答(如我们将看到的是正确的回答):这些物质结构只能是分子 (These material structures can only be molecules )。关于这些原子的集合体的存在,它有时是高度温定的,对此,当时的化学已有了广泛的了解 ( Of the existence, and sometimes very high stability, of these associations of atoms, chemistry had already acquired a widespread knowledge at the time )。不过这种了解是纯粹经验的 (But the knowledge was purely empirical )。对分子的性质还不了解——使分子保持一定形状的、原子间强有力的作用键,对每个人来说,完全是个谜 ( The nature of a molecule was not understood - the strong mutual bond of the atoms which keeps a molecule in shape was a complete conundrum to everybody. )。事实上,这个问答证明是正确的 (Actually, the answer proves to be correct ),可是,它只是把这种莫名其妙的生物学稳定性追溯到同样莫名其妙的化学稳定性 ( But it is of limited value as long as the enigmatic biological stability is traced back only to an equally enigmatic chemical stability),所以是无济于事的。根据同一个原理去证明两种在表面上相似的特性,只要这个原理本身还是未知的,那个证明就永远是靠不住的(The evidence that two features, similar in appearance, are based on the same principle, is always precarious as long as the principle itself is unknown)

33. 可以用量子论来解释(EXPLICABLE BY QUANTUM THEORY)

在这种情况下,量子论弥补了不足之处(In this case it is supplied by quantum theory)。根据现在的了解,遗传的机制是同量子论的基础密切相关的,不,是建立在量子论的基础之上的(In the light of present knowledge, the mechanism of heredity is closely related to, nay, founded on, the very basis of quantum theory )。量子理论是马克斯·普朗克(Max Planck)于1900年发现的。现代遗传学可以从德弗里斯、科伦斯和切尔玛克(1900年)重新发现孟德尔的论文,以及从德弗里斯关于突变的论文(1901—1903年)那时算起(Modern genetics can be dated from the rediscovery of Mendel's paper by de Vries, Correns and Tschermak [1900] and from de Vries's paper on mutations [l901-3] )。因此,这两大理论几乎是同时诞生的,而且它们两者一定要在相当成熟后才会发生联系,这也是不足为奇的 (Thus the births of the two great theories nearly coincide, and it is small wonder that both of them had to reach a certain maturity before the connection could emerge )。在量子论方面,化了四分之一世纪多的时间,直到1926—1927W.海特勒和F.伦敦才制定出化学键的量子论的一般原理 (On the side of quantum theory it took more than a quarter of a century till in 1926-7 the quantum theory of the chemical bond was outlined in its general principles by W. Heitler and F. London )。海特勒伦敦理论 (Heitler-London theory) 包含了量子论最新进展的最精细而错综复杂的概念(叫做量子力学 [quantum mechanics]”波动力学 [wave mechanics]”)。不用微积分的描述几乎是不可能的 (A presentation without the use of calculus is well-nigh impossible),否则至少要写象本书一样的另一本小册子。不过,好在是全部工作现在都已完成了,并有助于澄清我们的思想 ( But fortunately, now that all work has been done and has served to clarify our thinking),看来有可能以更直截了当的方式指出量子跃迁同突变之间的联系,来立即搞清楚最主要的项目 (it seems to be possible to point out in a more direct manner the connection between 'quantum jumps' and mutations, to pick out at the moment the most conspicuous item)。我们在这里就是试图做到这一点。

34. 量子论——不连续状态——量子跃迁(QUANTUM THEORY -DISCRETE STATES –QUANTUM JUMPS)

量子论的最大启示是在自然界的圣典里发现了不连续性的特点,而当时的观点却认为自然界中除了连续性外全都是荒谬的(The great revelation of quantum theory was that features of a discreteness were discovered in the Book of Nature, in context in which anything other than continuity seemed to be absurd according to the views held until then)。

第一个这样的例子涉及到的是能量(energy)。一个物体在很大范围内连续地改变着它的能量(A body on the large scale changes its energy continuously)。例如一个摆,它的摆动由于空气的阻力逐渐缓慢下来(A pendulum, for instance, that is set swinging is gradually slowed down by the resistance of the air)。十分奇怪的是,它却证明了,必须承认在原子这一级上的系统的行为是不同的(Strangely enough, it proves necessary to admit that a system of the order of the atomic scale behaves differently)。根据我们不能在这里详细说明的那些理由,我们必须假定一个小的系统由于它自己的性质,只能具有某种不连续的能量(a small system can by its very nature possess only certain discrete amounts of energy),称为它的特殊的能级(peculiar energy levels)。从一种状态转变为另一种状态,是一种相当神秘的事情(The transition from one state to another is a rather mysterious event),通常称之为量子跃迁(a quantum Jump

不过能量并不是一个系统的唯一的特征(But energy is not the only characteristic of a system)。再以我们的摆为例但是把它想象成能够作出各种运动的摆(Take again our pendulum, but think of one that can perform different kinds of movement),如天花板上悬下一根绳子,挂上一个重球,它能够作南北向、东西向或任何其他方向上的摆动,或者作圆形或椭圆形的摆动(a heavy ball suspended by a string from the ceiling can be made to swing in a northsouth or east-west or any other direction or in a circle or in an ellipse)。用一只风箱轻轻地吹这只球,便能是它从运动的一种状态连续地转变到任何另一种状态(By gently blowing the ball with a bellows, it can be made to pass continuously from one state of motion to other)。

对于微观系统来说,这些特征或相似的特征——对此我们不能详细地讨论了——的大多数都是不连续地发生变化的(For small-scale systems most of these or similar characteristics -we cannot enter into details - change discontinuously)。它们是量子化的,能量恰恰就是如此(They are 'quantized', just as the energy is)。

结果是许多个原子核,包括它们的电子卫兵,当发现它们自己(彼此)靠拢形成一个系统时(The result is that a number of atomic nuclei, including their bodyguards of electrons, when they find themselves close to each other, forming 'a system'),原子核是无法通过自己的性质来选择一种我们所能想象到的任何适宜的构型的(are unable by their very nature to adopt any arbitrary configuration we might think of. )。它们的性质使它们可以选择的只是大量的、但是不连续的状态系列 ( Their very nature leaves them only a very numerous but discrete series of 'states' to choose from )。我们通常称它们为级 (levels)或能级 (energy levels),因为能量是这种特征的十分重要的部分(because the energy is a very relevant part of the characteristic)。但是必须懂得,对它的完整的描述,要包括能量以外的更多的东西 (But it must be understood that the complete description includes much more than just the energy )。认为一种状态是意味着全部微粒的一种确定的构型,这种想法实际上是正确的 ( It is virtually correct to think of a state as meaning a definite configuration of all the corpuscles )

一种构型转变为另一种构型就是量子跃迁( The transition from one of these configurations to another is a quantum jump )。如果第二种构型具有更大的能量(是较高的能级),那么,外界至少要供给这个系统以两个能级间的能量差额,才能使转变成为可能 ( If the second one has the greater energy [ 'is a higher level' ], the system must be supplied from outside with at least the difference of the two energies to make the transition possible)。它也可以自发地变到较低的能级,通过辐射来消耗多余的能量 ( To a lower level it can change spontaneously on the spending the surplus of energy in radiation )

35. 分子(MOLECULES)

在原子选定的一组不连续状态中间,不一定是、但可以是使核彼此紧密靠拢的最低能级 (Among the discrete set of states of a given selection of atoms in such a state form a molecule )。在这种状态中,原子组成了分子。这里有一点是要着重指出的,即分子必须具有一定的稳定性( the molecule will of necessity have a certain stability);除非外界供给它以提高到邻近的较高能级所需的能量差额,否则,构型是不会改变的(the configuration cannot change, unless at least the energy difference, necessary to 'lift' it to the next higher level, is supplied from outside.)。因此,这种数量十分确定的能级差是定量地决定了分子的稳定程度(Hence this level difference, which is a welldefined quantity, determines quantitatively the degree of stability of the molecule.)。我们将会观察到,这个事实同量子论的基础本身,也就是同能级图式的不连续性的联系是多么的密切(how intimately this fact is linked with the very basis of quantum theory, viz. with the discreteness of the level scheme)。

我必须请读者姑且认为这些观点的体系已经被化学事实彻底地核实过了(I must beg the reader to take it for granted that this order of ideas has been thoroughly checked by chemical facts);而且它已经证明在解释化学原子价的基本事实和关于分子结构的许多细节,如它们的结合能,它们在不同温度下的稳定性等方面是成功的(it has proved successful in explaining the basic fact of chemical valency and many details about the structure of molecules, their binding-energies, their stabilities at different temperatures, and so on)。谈到Heitler- London理论时,我在这里是无法详细地加以检验的(I am speaking of the Heitler- London theory, which, as I said, cannot be examined in detail here)。

36. 分子的稳定性有赖于温度(THEIR STABILITY DEPENDENT ON TEMPERATURE)

我们必须因考察了生物学问题中最有兴趣的一点,即不同温度下的分子稳定性而感到满足(We must content ourselves with examining the point which is of paramount interest for our biological question, namely, the stability of a molecule at different temperatures)。假定我们的原子系统一开始确实是处在它的最低能级的状态(Take our system of atoms at first to be actually in its state of lowest energy)。物理学家称之为绝对零度下的分子(a molecule at the absolute zero of temperature)。要把它提高到相邻的较高的状态或能级,就需要供给一定的能量(To lift it to the next higher state or level a definite supply of energy is required)。最简单的供给能量的方式是给分子加热 [heat up]”。把它带进一个高温环境(热浴[heat bath]”),让别的系统(原子,分子)冲击它。考虑到热运动的完全不规则性,所以不存在一个可以肯定的、并立即引起提高 (lift )”的、截然分明的温度界限 ( Considering the entire irregularity of heat motion, there is no sharp temperature limit at which the 'lift' will be brought about with certainty and immediately )。更确切地说,在任何温度下(只要不是绝对零度),都有出现提高的机会 ( Rather, at any temperature [different from absolute zero] there is a certain smaller or greater chance for the lift to occur ),这种机会是有大有小的,而且当然是随着热浴的温度而增加的 (the chance increasing of course with the temperature of the heat bath)。表达这种机会的最好的方式是,指出在发生提高以前你必须等待的平均时间,即期待时间 (time of expectation)”

根据M.波拉尼 ( M. Polanyi ) 和 E.维格纳 (E. Wigner ) 的研究,“期待时间”主要取决于二种能量之比 ( the 'time of expectation' largely depends on the ratio of two energies ),一种能量正好就是为了“提高”而需要的能量差额本身(我们用W来表示),另一种能量是描述在有关的温度下热运动强度的特性(我们用T表示绝对温度,kT表示特有的能量)。有理由认为,实现“提高”的机会愈小,期待时间便愈长 ( the chance for effecting the lift is smaller, and hence that the time of expectation is longer ),而“提高”本身同平均热能相比也就愈高 ( the higher the lift itself compared with the average heat energy ),就是说,W: kT之比值的相当小的变化,会大大地影响期待时间。例如(按照德尔勃留克的例子),W是kT的三十倍,期待时间可能只短到1/10秒;但当W是kT的五十倍时,期待时间将延长到十六个月;而当W是kT的六十倍时,期待时间将延长到三万年(To give an example [ following Delbruck] : for W 30 times kT the time of expectation might be as short as 1\10s., but would rise to 16 months when W is 50 times kT, and to 30,000 years when W is 60 times kT)

37数学插值(MATHEMATICAL INTERLUDE)


对于那些对数学感兴趣的读者来说(for those readers to whom it appeals),也可以用数学的语言来说明(It might be as well to point out in mathematical language),这种对于能级或温度变化高度敏感的理由,同时再加上一些类似的物理学的说明(the reason for this enormous sensitivity to changes in the level step or temperature, and to add a few physical remarks of a similar kind)。其理由是,期待时间(称之为 t)是通过指数函数的关系依赖于W/ kT之比的;于是

t = τ eW/ kT

τ 是10的-13或-14次方秒这么小的数量级的常数 (τ is a certain small constant of the order of 10-13 or 10-14 S.)。这个特定的指数函数并不是一种偶然的特性 (this particular exponential function is not an accidental feature )。它一再出现在热的统计学理论中,似乎构成了该理论的基本内容 ( It recurs again and again in the statistical theory of heat, forming, as it were, its backbone.)。它是在系统的某个部分中,偶然地聚集象W那么大的能量的不可能性的几率的一种度量 (It is a measure of the improbability of an energy amount as large as W gathering accidentally in some particular part of the system,)。当需要有好几倍的“平均能量”kT时,增加得如此巨大的就是这种不可能性的几率 ( it is this improbability which increases so enormously when a considerable multiple of the 'average energy' kT is required )。

实际上,W=30kT(见上面引用的例子)已经是极少有的了。当然,它之所以还没有导致很长的期待时间(在我们的例子中只有1/10秒),是由于因子τ 很小的缘故。这个因子具有物理学的意义 (This factor has a physical meaning )。它是整个时间内,在系统里发生的振动周期的数量级 ( It is of the order of the period of the vibrations which take place in the system all the time )。你可以非常概括地描述这个因子,认为它是积聚起所需要的W总数的机会 (the chance of accumulating the required amount W ),它虽然很小,可是在“每一次振动”里是一再出现的 ( though very small, recurs again and again 'at every vibration' ),就是说,每秒大约有10的13或14次方次。


38. 第一个修正(FIRST AMENDMENT)


提出这些理由作为分子稳定性理论 (a theory of the stability of the molecule ) 时,就已经是默认了我们称之为“提高”的量子跃迁如果不是导致完全的分解 (the quantum jump which we called the 'lift' leads, if not to a complete disintegration ),至少也是导致相同的原子构成了本质上不同的构型 (at least to an essentially different configuration of the same atoms )—— 一种同分异构分子 (an isomeric molecule ),正如化学家说的,那是由相同的一些原子按不同的排列所组成的分子(a molecule composed of the same atoms in a different arrangement)(应用到生物学上时,它就代表同一个“位点”上的不同的“等位基因”,量子跃迁则代表突变 [ in the application to biology it is going to represent a different 'allele' in the same 'locus' and the quantum jump will represent a mutation] )。

对这个解释,必须作两点修正,为了使人们易于了解,我有意把它说得简单化些 (To allow of this interpretation two points must be amended in our story, which I purposely simplified to make it at all intelligible)。根据我所讲的,可能会认为 ( From the way I told it, it might be imagined that),只有在极低的能量状态下,一群原子才会组成我们所说的分子,而下一个比较高的状态已经是“别的一些东西”了(only in its very lowest state does our group of atoms form what we call a molecule and that already the next higher state is 'something else'.)。并不是这样的(That is not so)。事实上,即使在最低能级的后面,还有着一系列密集的能级(Actually the lowest level is followed by a crowded series of levels),这些能级并不涉及到整个构型的任何可以察觉的变化(which do not involve any appreciable change in the configuration as a whole),而只是对应于原子中间的那些微小的振动(but only correspond to those small vibrations among the atoms free which we have mentioned above),这种振动我们在第37节里已经讲了。它们也都是“量子化”的,不过是以较小的步子从一个能级跳到相邻的能级罢了(They, too, are 'quantized', but with comparatively small steps from one level to the next.)。因此,在低温下,“热浴”粒子的碰撞已足以造成振动(Hence the impacts of the particles of the 'heat bath' may suffice to set them up already at fairly low temperature )。如果分子是一种伸展的结构,你可以把这些振动想象为穿过分子而不发生任何伤害的高频声波(If the molecule is an extended structure, you may conceive these vibrations as high-frequency sound waves, crossing the molecule without doing it any harm.)。

所以,第一个修正并不是十分重大的:我们可以不去理会能级图式的“振动的精细结构(vibrational fine-structure)”。“相邻的较高能级(next higher level)”这个术语可以这样来理解,即与构型的改变相对应的相邻的能级(the next level that corresponds to a relevant change of configuration)。


39. 第二个修正(SECOND AMENDMENT)

第二个修正解释起来更加困难,因为它关系到各种能级图式的某种重要而又复杂的特性(because it is concerned with certain vital, but rather complicated, features of the scheme of relevantly different levels)。两个能级之间的自由通道也许被阻塞了,更谈不上供给所需要的能量了(The atoms free passage between two of them may be obstructed, quite apart from the required energy supply );事实上,甚至从比较高的状态到比较低的状态的通路也可能阻塞了(it may be obstructed even from the higher to the lower state)。

让我们从经验事实谈起吧(Let us start from the empirical facts)。化学家都知道,相同的原子团结合组成分子的方式不止一种(the same group of atoms can unite in more than one way to form a molecule)。这种分子叫做同分异构体(isomeric)(“由同样的成分组成的 [consisting of the same parts]”)。同分异构现象不是一种例外,而是一种规律( Isomerism is not an exception, it is the rule )。分子愈大,提供的同分异构体也就愈多 ( The larger the molecule, the more isomeric alternatives are offered )。一种最简单的情况,即同样由三个碳原子八个氢原子和一个氧原子所组成的两种丙醇 (propyl alcohol, both consisting of 3 carbons (C), 8 hydrogens (H), 1 oxygen (O). )。氢和碳之间氧都能够插入 ( The latter can be interposed between any hydrogen and its carbon),但只有两种情况才是不同的物质 ( but only the two cases shown in our figure are different substance)。它们确实也是如此。它们所有的物理常数和化学常数都是明显不同的 (All their physical and chemical constants are distinctly different)。它们的能量也不同,代表了“不同的能级” ( Also their energies are different, they represent 'different levels' ) 。

值得注意的是两个分子都是完全稳定的,它们的行为就象它们都是处于“最低状态” (The remarkable fact is that both molecules are perfectly stable, both behave as though they were 'lowest states' ) 。不存在从一种状态到另一种状态的自发转变 (There are no spontaneous transitions from either state towards the other )。

理由是两种构型并不是相邻的构型 (the two configurations are not neighbouring configurations )。要从一种构型转变为另一种构型,只能通过介乎两者之间的中间构型才能发生,这种中间构型的能量比它们当中的任何一种构型都要高(The transition from one to the other can only take place over intermediate configurations which have a greater energy than either of them)。粗浅地说,氧必须从一个位置抽出来,插到另一个位置上 (To put it crudely, the oxygen has to be extracted from one position and has to be inserted into the other.)。如果不经过能量相当高的构型,看来是无法完成这种转变的 ( There does not seem to be a way of doing that without passing through configurations of considerably higher energy ) 。

现在可以提出我们的“第二修正”了,即这一类“同分异构体”的变化,是在生物学应用中我们唯一感到兴趣的一种变化 ( Now we can give our 'second amendment', which is that transitions of this 'isomeric' kind are the only ones in which we shall be interested in our biological application )。 这些变化就是我们在第35节到37节中解释“稳定性[stability] ”时所必须牢记的。我们所说的“量子跃迁 [quantum jump]”,就是从一种相对稳定的分子构型变到另一种构型 ( the transition from one relatively stable molecular configuration to another)。供给转变所需的能量(其数量用W表示)并不是真正的能级差,而是从初级能量上升到阈的步阶 ( The energy supply required for the transition [ the quantity denoted by W ]is not the actual level difference, but the step from the initial level up to the threshold )。

在初态和终态之间不介入阈能的转变是毫无意义的 (Transitions with no threshold interposed between the initial and the final state are entirely uninteresting ),这不仅在生物学应用上是如此 ( that not only in our biological application)。这种转变对分子的化学稳定性确实是毫无作用的 ( They have actually nothing to contribute to the chemical stability of the molecule ),为什么呢 (Why )?因为它们没有持久的效应,它们是不引人注意的 (They have no lasting effect, they remain unnoticed )。由于没有什么东西阻止它们的回路,所以当它们发生转变时,几乎就立刻回复到初态了 (For, when they occur, they are almost immediately followed by a relapse so into the initial state, since nothing prevents their return)。

 

第五章 对德尔勃留克模型的讨论和检验(Delbruck's Model Discussed and Tested)


40. 遗传物质的一般图景(THE GENERAL PICTURE OF THE HEREDITARY SUBSTANCE)


根据这些事实,可以很简单地回答我们的问题,就是说:由少量原子组成的这些结构,能否长时间地经受住象遗传物质不断受到的那种热运动的干扰影响 (Are these structures, composed of comparatively few atoms, capable of withstanding for long periods the disturbing influence of heat motion to which the hereditary substance is continually exposed )?我们将假定一个基因的结构是一个巨大的分子( We shall assume the structure of a gene to be that of a huge molecule ) ,只能发生不连续的变化,这种变化只在于原子的重新排列并因此导致一种同分异构的分子之中(capable only of discontinuous change, which consists in a rearrangement of the atoms and leads to an isomeric molecule )。这种重新排列也许只影响到基因中的一小部分区域(The rearrangement may affect only a small region of the gene),大量的各种不同的重新排列也许是可能的(a vast number of different rearrangements may be possible)。从任何可能的同分异构体中,把实际的构型分离出来的阈能一定是很高的(这是同一个原子的平均热能相比),以致使这种变化成为一种罕有事件( The energy thresholds, separating the actual configuration from any possible isomeric ones, have to be high enough [ compared with the average heat energy of an atom ] to make the change-over a rare event )。这种罕有事件我们认为就是自发突变 (spontaneous mutations)。

本章的以后几部分将致力于检验基因和突变的一般图景 (devoted to putting this general picture of a gene and of mutation)(主要应归功于德国物理学家M.德尔勃留克 [ M. Delbruck ])同遗传学事实所作的详细比较(by comparing it in detail with genetical facts)。在此之前,我们可以对这一理论的基础和一般性质适当地作些评论。


41. 图景的独特性(THE UNIQUENESS OF THE PICTURE)

为生物学问题去穷根究底,并把图景建立在量子力学的基础之上,这是绝对必要的吗(Was it absolutely essential for the biological question to dig up the deepest roots and foundthe picture on quantum mechanics)?基因是一个分子,这样的猜测,我敢说,在今天已是老生常谈了(The conjecture that a gene is a molecule is today, I dare say, a commonplace)。不管他是不是熟悉量子论,不同意这种猜测的生物学家是很少的了(Few biologists, whether familiar with quantum theory or not, would disagree with it )。在第32节中,我们大胆地使用了量子论问世以前的物理学家的语言,作为观察到的不变性的唯一合理的解释(we ventured to put it into the mouth of a pre-quantum physicist, as the only reasonable explanation of the observed permanence)。随后是关于同分异构性(isomerism),阈能(threshold energy),W: kT在决定同分异构体变化几率中的重要作用等因素的理由(the paramount role of the ratio W:kT in determining the probability of an isomeric transition)——所有这一切理由,都可以在纯粹经验的基础上很好地加以说明;不管怎样,反正都不是来源于量子论的(all that could very well be introduced to our purely empirical basis, at any rate without drawing on quantum theory)。既然在这本小册子里,我不能真正地把它讲清楚,而且还可能使许多读者感到厌烦,那我为什么还要如此强烈地坚持量子力学的观点呢(Why did I so strongly insist on the quantum-mechanical periods the point of view, though I could not really make it clear in this little book and may well have bored many a reader )?

量子力学是根据一些最好的原理来说明自然界中实际碰到的、原子的各种集合体的第一个理论方法(Quantum mechanics is the first theoretical aspect which accounts from first principles for all kinds of aggregates of atoms actually encountered in Nature.)。海特勒-伦敦键是这个理论的一个独特的特点,但是这个理论并不是为了解释化学键而发明的(The Heitler-London bondage is a unique, singular feature of the theory, not invented for the purpose of explaining the chemical bond.)。它是以一种十分有趣而且费解的方式出现的,是根据完全不同的理由强加给我们的(It comes in quite by itself, in a highly interesting and puzzling manner, being forced upon us by entirely different considerations.)。现已证明,这个理论同观察到的化学事实是十分吻合的(It proves to correspond exactly with the observed chemical facts),而且,正如我所说的,这是一个独特的特点,由于对这个特点有足够的了解,所以可以相当肯定地说,在量子论的进一步发展中,“不可能再发生这样的事情了” (as I said, it is a unique feature, well enough understood to tell with reasonable certainty that 'such a thing could not happen again' in the further development of quantum theory)。

因此,我们可以满有把握地断言,除了遗传物质的分子解释外,不再有别的解释了(there is no alternative to the molecular explanation of the hereditary substance)。在物理学方面不再有别的可能性可以解释遗传物质的不变性(The physical aspect leaves no other possibility to account for itself and of its permanence)。如果德尔勃留克的描述是不管用的,那么,我们将不得不放弃作进一步的尝试(If the Delbruck picture should fail, we would have to give up further attempts )。这是我想说明的第一点。

42. 一些传统的错误概念(SOME TRADITIONAL MISCONCEPTIONS)

但是,也许可以问:除了分子以外,难道真的就没有由原子构成的、其他的可以持久的结构了吗(Are there really no other endurable structures composed of atoms except molecules)?比如,埋在坟墓里一、二千年的一枚金币,难道不是保留着印在它上面的人像的模样吗(Does not a gold coin, for example, buried in a tomb for a couple of thousand years, preserve the traits of the portrait stamped on it )?这枚金币确实是由大量原子构成的,但在这个例子中,我们肯定不会把这种形象的保存归因于巨大数字的统计(It is true that the coin consists of an enormous number of atoms, but surely we are in this case not inclined to attribute the mere preservation of shape to the statistics of large numbers)。这种说法同样也适用于我们发现蕴藏在岩石里的、经过几个地质时代而没有发生变化的一批明莹的晶体(The same remark applies to a neatly developed batch of crystals we find embedded in a rock, where it must have been for geological periods without changing)。

这就引出了我要说明的第二点。一个分子,一个固体,一块晶体的情况并没有真正的差别(The cases of a molecule, a solid crystal are not really different)。从现代的知识来看,它们实质上是相同的(In the light of present knowledge they are virtually the same.)。不幸的是,学校的教学中还保持着好多年前就已过时了的传统观念,从而模糊了对实际事态的了解(Unfortunately, school teaching keeps up certain traditional views, which have been out of date for many years and which obscure the understanding of the actual state of affairs)。其实,我们在学校里学到的有关分子的知识,并没有讲到分子对固态的相似程度比对液体或气态更为接近的观点(they are more closely akin to the solid state than to the liquid or gaseous state.)。相反,教给我们的是要仔细地区分物理变化和化学变化物理变化,如熔化或蒸发,在这种变化中,分子是保持着的(比如酒精,不管它是固体、液体还是气体,总是由相同的分子C2H6O组成的)。化学变化如酒精的燃烧,C2H6O + 3 O2 = 2CO 2 + 3H2O ,在那里,一个酒精分子同三个氧分子经过重新排列生成了二个二氧化碳分子和三个水分子。

关于晶体,我们学到的是它们形成了周期性的三向堆叠的晶格(About crystals, we have been taught that they form three-fold periodic lattices),晶格里的单个分子的结构有时是可以识别的(the structure of the single molecule is sometimes recognizable),酒精和许多有机化合物就是如此(as in the case of alcohol, and most organic compounds);在其他的晶体中,比如岩盐(氯化钠,NaCl),氯化钠分子是无法明确地区分界限的(rock-salt [ NaCI], NaCI molecules cannot be unequivocally delimited),因为每个钠原子被六个氯原子对称地包围着,反过来也是如此(because every Na atom is symmetrically surrounded by six CI atoms, and vice versa);所以说,如果有钠氯原子对的话,那么,不管哪一对都可以看作是氯化钠分子的组成 (so that it is largely arbitrary what pairs, if any, are regarded as molecular partners )。

最后,我们还学到,一个固体可以是晶体,也可以不是晶体 (a solid can be crystalline or not),后一种情况,我们称之为无定形的固体 (amorphous)。


43. 物质的不同的“态”(DIFFERENT STATES OF MATTER)

目前,我还没有走得那么远,想把所有这些说法和区别都说成是错误的 ( Now I would not go so far as to say that all these statements and distinctions are quite wrong )。它们在实际应用中往往是有用的 ( For practical purposes they are sometimes useful ) 。但在物质结构的真实性方面,必须用完全不同的方法划清一些界限 (But in the true aspect of the structure of matter the limits must be drawn in an entirely different way.)。基本的区别在下面的“等式”的等号之间 ( The fundamental distinction is between the two lines of the following scheme of 'equations' ):

分子 = 固体 = 晶体 (molecule = solid = crystal)
气体 = 液体 = 无定形的固体 ( gas = liquid = amorphous)

对这些说法,我们必须作简要的说明 ( We must explain these statements briefly )。所谓无定形的固体 (amorphous solids ),要么不是真正的无定形,要么不是真正的固体(either not really amorphous or not really solid ) 。在“无定形的 [amorphous]”木炭纤维(charcoal fibre) 里,X射线已经揭示出石墨晶体的基本结构 ( rudimentary structure of the graphite crystal has been disclosed by X-rays )。所以,木炭是固体,但也是晶体 ( So charcoal is a solid, but also crystalline )。在我们还没有发现晶体结构的地方,我们必须把它看作是“粘性”(内摩擦)极大的一种液体 ( Where we find no crystalline structure we have to regard the thing as a liquid with very high 'viscosity' [ internal friction] )。这样一种没有确定熔化温度和熔化潜热的物质,表明它不是一种真正的固体 ( Such a substance discloses by the absence of a well-defined melting temperature and of a latent heat of melting that it is not a true solid )。将它加热时,它逐渐地软化,最后液化而不存在不连续性 ( When heated it softens gradually and eventually liquefies without discontinuity)(我记得在第一次世界大战末期,在维也纳曾经有人给我们象沥青那样的东西作为咖啡的代用品。它是这么硬,必须在它出现光滑的贝壳似的裂口时,用凿子或斧头把它砸成碎片。可是,过一段时间后,它会变成液体,如果你很蠢地把它搁上几天,它就会牢牢地粘在容器的底部)。


气态和液体的连续性是非常熟悉的事情 ( The continuity of the gaseous and liquid state is a well-known story )。 你可以用 “围绕” 所谓临界点的方法,使任何一种气体液化,也就没有什么不连续性 (You can liquefy any gas without discontinuity by taking your way 'around' the so-called critical point )。但这个问题我们在这里不准备多谈了。

44. 真正重要的区别(THE DISTINCTION THAT REALLY MATTERS)

这样,上述图式中除了主要之点外,我们都已证明是有道理的(We have thus justified everything in the above scheme, except the main point);这个主要之点就是我们想把一个分子看成是一种固体=晶体(we wish a molecule to be regarded as a solid = crystal)。

这一点的理由是,把一些原子,不管它有多少,结合起来组成分子的力的性质,同把大量原子结合起来组成真正的固体——晶体的力的性质是一样的(the atoms forming a molecule, whether there be few or many of them, are united by forces of exactly the same nature as the numerous atoms which build up a true solid, a crystal)。分子表现出同晶体一样的结构稳固性(The molecule presents the same solidity of structure as a crystal.)。要记住,我们正是从这种稳固性来说明基因的不变性的(Remember that it is precisely this solidity on which we draw to account for the permanence of the gene)!


物质结构中真正重要的区别在于原子是否为那种海特勒-伦敦力所结合在一起(whether atoms are bound together by those Heitler-London forces or whether they are not)。在固体中和在分子中,原子是这样结合的(In a solid and in a molecule they all are)。在单原子的气体中(比如水银蒸气),它们就不是那样了(In a gas of single atoms [ as e.g. think mercury vapour ]they are not)。在分子组成的气体中,只是在每个分子中,原子才是以这种方式结合在一起的 (In a gas composed of molecules, only the atoms within every molecule are linked in this thirty way )。

45. 非周期性的固体(THE APERIODIC SOLID)

一个很小的分子也许可以称为“固体的胚” (A small molecule might be called 'the germ of a solid'.)。从这样一个小的固体胚开始,看来可以有两种不同的方式来建造愈来愈大的集合体 ( Starting from such a small solid germ, there seem to be two different ways of building up larger and larger associations ) 。一种是在三个方向上一再重复同一种结构的、比较乏味的方式 ( One is the comparatively dull way of repeating the same structure in three directions again and again) 。这是一个正在生长中的晶体所遵循的方式 ( That is the way followed in a growing crystal ) 。周期性一旦建立后,集合体的大小就没有一定的限度了(Once the periodicity is established, there is no definite limit to the size of the aggregate) 。另一种方式不用那种乏味的重复的图样,而是建造愈来愈扩大的集合体 (The other way is that of building up a more and more extended aggregate without the dull device of repetition ) 。那就是愈来愈复杂的有机分子 ( That is the case of the more and more complicated organic moleculein ),这种分子里的每一个原子,以及每一群原子都起着各自的作用,跟其他的原子起的作用(比如在周期性结构里的原子)是不完全相同的 ( which every atom, and every group of atoms, plays an individual role, not entirely equivalent to that of many others [ as is the case in a periodic structure] )。我们可以恰当地称之为一种非周期性的晶体或固体 (an aperiodic crystal or solid ),并且可以用这样的说法来表达我们的假说:我们认为一个基因——也许是整个染色体纤丝——是一种非周期性的固体 ( We believe a gene –or perhaps the whole chromosome fibre - to be an aperiodic solid)。

46. 压缩在微型密码里的内容的多样性(THE VARIETY OF CONTENTS COMPRESSED IN THE MINIATURE CODE)

经常会碰到这样的问题:象受精卵细胞核这样小的物质微粒,怎能包含涉及有机体未来的全部发育的精细的密码本呢 (how this tiny speck of material, nucleus of the fertilized egg, could contain an elaborate code-script involving all the future development of the organism ) ?一种赋予足够的抗力来永久地维持其秩序的、秩序井然的原子结合体(A wellordered association of atoms, endowed with sufficient resistivity to keep its order permanently),看来是一种唯一可以想象的物质结构(appears to be the only conceivable material structure),这种物质结构提供了各种可能的(“异构的”)排列,在它的一个很小的空间范围内足以体现出一个复杂的“决定”系统(that offers a variety of possible ('isomeric') arrangements, sufficiently large to embody a complicated system of 'determinations' within a small spatial boundary)。真的,在这种结构里,不必有大量的原子就可产生出几乎是无限的可能的排列(Indeed, the number of atoms in such a structure need not be very large to produce an almost unlimited number of possible arrangements)。为了把问题讲清楚,就想到了莫尔斯密码(Morse code)。这个密码用点(“·”)、划(“-”)两种符号,如果如果每一个组合用的符号不超过四个,就可以编成三十种不同的代号(The two different signs of dot and dash in well-ordered groups of not more than four allow thirty different specifications)。现在如果你在点划之外再加上第三种符号,每一个组合用的符号不超过十个,你就可以编出88572个不同的“字母”( if you allowed yourself the use of a third sign, in addition to dot and dash, and used groups of not more than ten, you could form 88,572 different 'letters' );如果用五种符号,每一个组合用的符号增加到25个,那编出的字母可以有37529846191405个(with five signs and groups up to 25, the number is 372,529,029,846,191,405)。

可能有人会不同意,他们认为这个比喻是有缺点的,因为莫尔斯符号可以有各种不同的组合(比如,·--和··-)因此与同分异构体作类比是不恰当的。为了弥补这个缺点,让我们从第三种情况中,只挑出25个符号的组合,而且只挑出由五种不同的符号、每种符号都是五个所组成的那种组合(就是由五个点,五个短划……等组成的组合)。粗粗地算一下,组合数是62330000000000个,右边的几个零代表什么数字,我不想化气力去算它了(where zeros on the right stand for figures which I have not taken the trouble to compute)。

当然,实际情况决不是原子团的“每一种”排列都代表一种可能的分子(by no means 'every' arrangement of the group of atoms will represent a possible molecule);而且,这也不是任意采用什么样的密码的问题(moreover, it is not a question of a code to be adopted arbitrarily),因为密码本的本身必定是引起发育的操纵因子(for the code-script must itself be the operative factor bringing about the development )。可是,另一方面,上述例子中选用的数目(25个)还是很少的,而且我们也只不过设想了在一条直线上的简单排列(But, on the other hand, the number chosen in the example [25] is still very small, and we have envisaged only the simple arrangements in one line)。我们希望说明的只不过是 (What we wish to illustrate is simply that ),就基因分子的图式来说 (with the molecular picture of the gene ),微型密码是丝毫不错地对应于一个高度复杂的特定的发育计划 (the miniature code should precisely correspond with a highly complicated and specified plan of development),并且包含了使密码发生作用的手段(should somehow contain the means to put it into operation ) ,这一点已经不再是难以想象的了。

47. 与事实作比较:稳定性的程度;突变的不连续性(COMPARISON WITH FACTS: DEGREE OF STABILITY; DISCONTINUITY OF MUTATIONS)

最后,让我们用生物学的事实同理论的描述作比较 ( Now let us at last proceed to compare the theoretical picture with the biological facts.) 。第一个问题显然是理论描述能否真正说明我们观察到的高度不变性 (whether it can really account for the high degree of permanence we observe )。所需要的阈值数量--平均热能kT的好多倍--是合理的吗(Are threshold values of the required amount -high multiples of the average heat energy kT - reasonable) ?是在普通化学所了解的范围之内吗 (are they within the range known from ordinary chemistry )?这些问题是很寻常的( That question is trivial ),不用查表就可肯定地回答 ( it can be answered in the affirmative without inspecting tables )。化学家能在某一温度下分离出来的任何一种物质的分子,在那个温度下至少有几分钟的寿命(The molecules of any substance which the chemist is able to isolate at a given temperature must at that temperature have a lifetime of at least minutes )(这是说得少一点,一般说来,它们的寿命要长得多)。这样,化学家碰到的阈值,必定正好就是解释生物学家可能碰到的那种不变性所需要的数量级(Thus the threshold values the chemist encounters are of necessity precisely of the order of magnitude required to account for practically any degree of permanence the biologist may encounter);因为根据第36节的描述,我们会记得在大约1:2的范围内变动的阈值,可以说明从几分之一秒到几万年范围内的寿命(thresholds varying within a range of about 1:2 will account for lifetimes ranging from a fraction of a second to tens of thousands of years)。

为了今后的参考,我提一些数字(let me mention figures, for future reference)。第36节的例子里提到的W/kT之比,是:W/kT=30,50,60,分别产生的寿命是1/10秒,16个月,30000年(The ratios W/kT mentioned by way of example on p. 51, viz. W/kT = 30,50,60, producing lifetimes of 1/10s, 16 months, 30,000 years, respectively )。在室温下,对应的阈值是0.9,1.5,1.8 电子伏(correspond at room temperature with threshold values of 0.9, 1.5, 1.8 electron-volts)。必须解释一下“电子伏(electron-volts)”这个单位,这对物理学家来说是很方便的,因为它是可以具体化的(which is rather convenient for the physicist, because it can be visualized)。比如,第三个数字(1.8)就是值被2伏左右的电压所加速的一个电子,将获得正好是足够的能量去通过碰撞而引起转变(means that an electron, accelerated by a voltage of about 2 volts, would have acquired just sufficient energy to effect the transition by impact )(为了便于作比较,一个普通的袖珍手电筒的电池有3伏)。

根据这些理由可以想象到,由振动能的偶然涨落所产生的、分子某个部分中的构型的一种异构变化(an isomeric change of configuration in some part of our molecule is, produced by a chance fluctuation of the vibrational energy),实际上是十足的罕有事件,这可以解释为一次自发突变(can actually be a sufficiently rare event to be interpreted as a spontaneous mutation.)。因此,我们根据量子力学的这些原理,解释了关于突变的最惊人的事实(Thus we account, by thevery principles of quantum mechanics, for the most amazing fact about mutations ),正是由于这个事实,突变才第一次引起了德弗里斯的注意 ( the fact by which they first attracted de Vries’ attention),就是说,突变是不出现中间形式的,而是“跃迁式”的变异 (they are 'jumping' variations of any intermediate forms occurring)。


48. 自然选择的基因的稳定性(STABILITY OF NATURALLY SELECTED GENES)

在发现了任何一种电离射线都会增加自然突变率以后 ( Having discovered the increase of the natural mutation rate by any kind of ionizing rays ),人们也许会认为自然率起因于土壤和空气中的放射性,以及宇宙射线 (one might think of attributing the natural rate to the radio-activity of the soil and air and to cosmic radiation )。可是,与X射线的结果作定量的比较,却表明“天然辐射 (natural radiation)”太弱了,只能说明自然率的一小部分。

倘若我们用热运动的偶然的涨落来解释罕有的自然突变 ( Granted that we have to account for the rare natural mutations by chance fluctuations of the heat motion ),那么,我们就不会感到太惊奇了,因为自然界已成功地对阈值作出了巧妙的选择,这种选择必然使突变成为罕见的 (Nature has succeeded in making such a subtle choice of threshold values as is necessary to make mutation rare)。因为频繁的突变对进化是有害的 ( frequent mutations are detrimental to evolution ),这是在前几节中已经得出的结论 。一些通过突变得到不很稳定的基因构型的个体,它们那些“过分频繁的”、迅速地在发生突变的后代能长期生存下去的机会是很小的 (Individuals which, by mutation, acquire a gene configuration of insufficient stability, will have little chance of seeing their 'ultra-radical', rapidly mutating descendancy survive long ) 。物种将会抛弃这些个体,并将通过自然选择把稳定的基因集中起来 (The species will be freed of them and will thus collect stable genes by natural selection)。

49. 突变体的稳定性有时是较低的(THE SOMETIMES LOWER STABILITY OF MUTANTS)

至于在我们的繁育试验中出现的、被我们选来作为突变体以研究其后代的那些突变体,当然不能指望它们都表现出很高的稳定性 (as regards the mutants which occur in our breeding experiments and which we select, qua mutants, for studying their offspring, there is no reason to expect that they should all show that very high stability )。因为它们还没有经受过“考验”--或者,如果说是已经受过“考验”了,它们却在野外繁殖时被“抛弃”了--可能是由于突变可能性太高的缘故 (For they have not yet been 'tried out' -or, if they have, they have been 'rejected' in - the wild breeds -possibly for too high mutability )。总而言之,当我们知道有些突变体的突变可能性比正常的“野生”基因要高得多的时候,我们是一点也不感到奇怪的 ( At any rate, we are not at all astonished to learn that actually some of these mutants do show a much higher mutability than the normal ‘wild’ genes )。

50. 温度对不稳定基因的影响小于对稳定基因的影响(TEMPERATURE INFLUENCES UNSTABLE GENES LESS THAN STABLE ONES)

这一点使我们能够检验我们的突变可能性的公式:t = τW/ kT(我们还记得,t 是对于具有阈能W的突变的期待时间。)我们问:t 是如何随温度而变化的 (How does t change with the temperature) ?从上面的公式中,我们很容易找到温度为T+10 时的 t 值同温度为T时的 t 值之比的近似值

T +10 / t T = e -10  W / k T * T 


指数是负数,比率当然小于1。温度上升则期待时间减少,突变可能性就增加 (The time of expectation is diminished by raising the temperature, the mutability is increased ) 。现在可以检验了,而且已经在果蝇受得了的温度范围内,用果蝇作了检验 ( Now that can be tested and has been tested with the fly Drosophila in the range of temperature which the insects will stand)。乍看起来,这个结果是出乎意料的。野生基因的低的突变可能性明显地提高了,可是一些已经突变了的基因的较高的突变可能性却并未增加,或者说,增加很少 ( The low mutability of wild genes was distinctly increased, but the comparatively high mutability occurring with some of the already mutated genes was not, or at any rate was much less, increased )。这种情况恰恰是我们在比较两个公式时预期到的 (That is just what we expect on comparing our two formulae )。根据第一个公式,要想使t增大(稳定的基因)就要求W/kT的值增大;而根据第二个公式,W/kT的值增大了,就会使算出来的比值减小,就是说,突变可能性将随着温度而有相当的提高 ( for a considerable increase of mutability with temperature)。(实际的比值大约在1/2到1/5之间。其倒数2-5是普通化学反应中所说的范霍夫因子[van't Hoff factor ]。)

51. X射线是如何产生突变的(HOW X-RAYS PRODUCE MUTATION)

现在转到X射线引起的突变率 (Turning now to the X-ray-induced mutation rate ),根据繁育试验我们已经推论出,第一(根据突变率和剂量的比例),一些单一事件引起了突变 (some single event produces the mutation );第二(根据定量的结果,以及突变率取决于累积的电离密度而同波长无关的事实),为了产生一个特定的突变,这种单一事件必定是一个电离作用,或类似的过程,它又必须发生在只有大约边长以10个原子距离计的立方体之内 ( this single event must be an ionization, or similar process, which has to take place inside a certain volume of only about 10 atomic-distances-cubed, in order to produce a specified mutation )。根据我们的描述,克服阈值的能量一定是由爆炸似的过程,如电离或激发过程所供给的(the energy for overcoming the threshold must obviously be furnished by that explosion-like process,ionization or excitation.)。我所以称它为爆炸似的过程,是因为一个电离作用花费的能量(顺便说一下,并不是X射线本身花费的,而是它产生的次级电子所耗用掉的 [ spent, incidentally, not by the X-ray itself, but by a secondary electron it produces ] ),有30个电子伏,大家很清楚,这是相当大的(I call it explosion-like, because the energy spent in one ionization is well known and has the comparatively enormous amount of 30 electron-volts)。这样,在放电点周围的热运动必定是大大地增加了,并且以原子强烈振动的“热波”形式从那里散发出来 ( It is bound to be turned into enormously increased heat motion around the point where it is discharged and to spread from there in the form of a 'heat wave', a wave of intense oscillations of the atoms )。这种热波仍能供给大约10个原子距离的平均“作用范围”内所需的一、二个电子伏的阈能,这也不是不可想象的 ( That this heat wave should still be able to furnish the required threshold energy of 1 or 2 electron-volts at an average 'range of action' of about ten atomic distances, is not inconceivable )。话虽这么说,一个没有偏见的物理学家也许会预料到,存在着一个更小的作用范围 (though it may well be that an unprejudiced physicist might have anticipated a slightly lower range of action)。在许多情况下,爆炸的效应将不是一种正常的异构转变 ( That in many cases the effect of the explosion will not be an orderly isomeric transition),而是染色体的一种损伤 (but a lesion of the chromosome) ,通过巧妙的杂交,使得没有受到损伤的那条染色体(即第二套染色体中与受损伤的染色体对应配对的那一条[ the corresponding chromosome of the second set ]),被相应位点上的基因是病态的一条染色体所替换时,这种损伤就是致死的 (a lesion that becomes lethal when, by ingenious crossings, the uninjured partner is removed and replaced by a partner whose corresponding gene is known to be itself morbid)。所有这一切,全是可以预期的,而且观察到的也确是如此 (all that is absolutely to be expected and it is exactly what is observed)。

52. X射线的效率并不取决于自发的突变可能性(THEIR EFFICIENCY DOES NOT DEPEND ON SPONTANEOUS MUTABILITY)

其他一些特性,如果并没有象图式所预言的那样出现,那么,供给上面讲的致死损伤也就容易理解了(Quite a few other features are, if not predictable from the picture, easily understood from it ) 。例如,一个不稳定的突变体的X射线突变率,平均起来并不高于稳定的突变体 (an unstable mutant does not on the average show a much higher X-ray mutation rate than a stable one )。现在,就拿供给30个电子伏那里的爆炸来说,所需的阈能不管是大还是小,比如说,1伏或1.3伏,你肯定不能指望30个电子伏会造成许多差别。

53. 回复突变(REVERSIBLE MUTATIONS)

有些情况下,转变是从两个方向上来研究的,比如说,从一个确定的“野生”基因变到一个特定的突变体,再从那个突变体变回到野生基因 (from a certain 'wild' gene to a specified mutant and back from that mutant to the wild gene)。这种情况下,自然突变率有时几乎是相等的,有时却又很不相同 ( In such cases the natural mutation rate is sometimes nearly the same, sometimes very different )。乍看起来,这是难以理解的,因为这两种情况下要克服的阈似乎是相等的(At first sight one is puzzled, because the threshold to be overcome seems to be the same in both cases )。可是,它当然不是这种情况,因为它必须根据开始时的构型的能级来计算 ( because it has to be measured from the energy level of the starting configuration ),而且野生基因和突变基因的能级可能是不同的 ( that may be different for the wild and the mutated gene ) 。

总之,我认为德尔勃留克的“模型”是经得起检验的,我们有理由在进一步的研究中应用它 (On the whole, I think, Delbruck's 'model' stands the tests fairly well and we are justified in using it in further considerations )。

 

第六章 有序,无序和熵

54. 从模型得出的一个值得注意的一般结论(A REMARKABLE GENERAL CONCLUSION  FROM THE MODEL)

让我引用第46节最后的一句话,在那句话里,我试图说明的是,根据基因的分子图(molecular picture of the gene) 来看,“就基因分子的图式来说,微型密码是丝毫不错地对应于一个高度复杂的特定的发育计划,并且包含了使密码发生作用的手段,这一点已经不再是难以想象的了”。这很好,那么它又是如何做到这一点的呢(Very well then, but how does it do this)?我们又如何从“可以想象的”变为真正的了解呢(How are we going to turn ‘conceivability’ into true understanding)?

德尔勃留克的分子模型,在它整个概论中似乎并未暗示遗传物质是如何起作用的(Delbruck's molecular model, in its complete generality, seems to contain no hint as to how the hereditary substance works)。说实话,我并不指望在不久的将来,物理学会对这个问题提供任何详细的信息(Indeed, I do not expect that any detailed information on this question is likely to come from physics in the near may future)。不过,我确信,在生理学和遗传学指导下的生物化学,正在推进这个问题的研究,并将继续进行下去(The advance is proceeding and will, I am sure, continue to do so, from biochemistry under the guidance of physiology and genetics.)。

根据上述对遗传物质结构的一般描述,还不能显示出关于遗传机制的功能的详细信息(No detailed information about the functioning of the genetical mechanism can emerge from a description of its structure so general as has been given above)。这是显而易见的。但是,十分奇怪的是,恰恰是从它那里得出了一个一般性的结论( there is just one general conclusion to be obtained from it ),而且我承认,这是我写这本书的唯一动机(that, I confess, was my only motive for writing this book)。

从德尔勃留克的遗传物质的概述中可以看到(From Delbruck's general picture of the hereditary subustance),生命物质在服从迄今为止已确定的“物理学定律”的同时,可能还涉及到至今还不了解的“物理学的其他定律”(it emerges that living matter, while not eluding the 'laws of physics' as established up to date, is likely to involve 'other laws of physics' hitherto unknown),这些定律一旦被揭示出来,将跟以前的定律一样,成为这门科学的一个组成部分(once they have been revealed, will form just as integral a part of this science as the former)。

55. 秩序基础上的有序(ORDER BASED ON ORDER)

这是一条相当微妙的思路,不止在一个方面引起了误解(This is a rather subtle line of thought, open to misconception in more than one respect.)。本书剩下的篇幅就是要澄清这些误解(All the remaining pages are concerned with making it clear.)。在以下的考虑中,可以看到一种粗糙的但不完全是错误的初步意见(A preliminary insight, rough but not altogether erroneous may be found in the following considerations):

我们所知道的物理学定律全是统计学定律(statistical laws),这在第一章里已作了说明。这些定律同事物走向无序状态的自然倾向是大有关系的(They have a lot to do with the natural tendency of things to go over into disorder.)。

但是,要使遗传物质的高度持久性同它的微小体积协调一致(to reconcile the high durability of the hereditary substance with its minute size),我们必须通过一种“虚构的分子”来避免无序的倾向(we had to evade the tendency to disorder by 'inventing the molecule' )。事实上,这是一种很大的分子,是高度分化的秩序的杰作,是受到了量子论的魔法保护的(an unusually large molecule which has to be a masterpiece of highly differentiated order, safeguarded by the conjuring rod of quantum theory )。机遇的法则并没有因这种“虚构”而失效,不过,它们的结果是修改了(The laws of chance are not invalidated by this 'invention', but their outcome is modified )。物理学家很熟悉这样的事实,即物理学的经典定律已经被量子论修改了(the classical laws of physics are modified by quantum theory),特别是低温情况下(especially at low temperature)。这样的例子是很多的(There are many instances of this)。看来生命就是其中一例,而且是一个特别惊人的例子( Life seems to be one of them, a particularly striking one)。生命似乎是物质的有序和有规律的行为(Life seems to be orderly and lawful behaviour of matter),它不是完全以它的从有序转向无序的倾向为基础的(not based exclusively on its tendency to go over from order to disorder ),而是部分地基于那种被保持着的现存秩序(but based partly on existing order that is kept up.)。

对于物理学家--仅仅是对他来说--我希望,这样说了以后,能更清楚地讲明我的观点,即生命有机体似乎是一个宏观系统(The living organism seems to be a macroscopic system),它的一部分行为接近于纯粹机械的(与热力学作比较)(which in part of its behaviour approaches to that purely mechanical),当温度接近绝对零度,分子的无序状态消除的时候,所有的系统都将趋向于这种行为(conduct to which all systems tend, as the temperature approaches absolute zero and the molecular disorder is removed )。

非物理学家发现,被他们作为高度精确的典范的那些物理学定律,竟以物质走向无序状态的统计学趋势作为基础,感到这是难以相信的(The non-physicist finds it hard to believe that really the ordinary laws of physics, which he regards as the prototype of a part inviolable precision, should be based on the statistical tendency of matter to go over into disorder)。在第一章里,我已举过一个例子。涉及到的一般原理就是有名的热力学第二定律(Second Law of Thermodynamics)(熵的原理 [entropy principle] ),以及它的同样有名的统计学基础 (equally famous statistical foundation )。在第56到60节里,我想扼要地说明熵的原理对一个生命有机体宏观行为的意义 (try to sketch the bearing of the entropy principle on the large-scale behaviour of a living organism )--这时完全可以忘掉关于染色体、遗传等已经了解的东西。

56. 生命物质避免了趋向平衡的衰退(LIVING MATTER EVADES THE DECAY TO EQUILIBRIUM)

生命的特征是什么(What is the characteristic feature of life )?一块物质什么时候可以说是活的呢 ( When is a piece of matter said to be alive )?那就是当它继续在“做某些事情”,运动,新陈代谢(exchanging material with its environment),等等,而且可以指望它比一块无生命物质在相似情况下“维持生活”的时间要长得多 ( for a much longer period than we would expect of an inanimate piece of matter to 'keep going' under similar circumstances )。当一个不是活的系统被分离出来,或是放在一个均匀的环境里的时候,由于各种摩擦阻力的结果,所有的运动往往立即陷于停顿 (When a system that is not alive is isolated or placed in a uniform environment, all motion usually comes to a standstill very soon as a result of various kinds of friction ) ;电势或化学势的差别消失了,倾向于形成化学化合物的物质也是这种情况,温度由于热的传导而变得均一了(differences of electric or chemical potential are equalized, substances which tend to form a chemical compound do so, temperature becomes uniform by heat conduction )。在此以后,整个系统衰退成死寂的、无生气的一团物质 (After that the whole system fades away into a dead, inert lump of matter )。这就达到了一种永恒不变的状态,不再出现可以观察到的事件 (A permanent state is reached, in which no observable events occur )。物理学家把这种状态称为热力学平衡 (thermodynamical equilibrium ),或“ 熵最大值(maximum entropy )”。

实际上,这种状态经常是很快就达到的 ( Practically, a state of this kind is usually reached very rapidly.)。从理论上来说,它往往还不是一种绝对的平衡,还不是熵的真正的最大值 ( Theoretically, it is very often not yet an absolute equilibrium, not yet the true maximum of entropy )。最后达到平衡是十分缓慢的 ( But then the final approach to equilibrium is very slow )。它可能是几小时、几年、几个世纪……。举一个例子,这是接近平衡还算比较快的一个例子:倘若一只玻璃杯盛满了清水,第二只玻璃杯盛满了糖水,一起放进一只密封的、恒温的箱子里 ( if a glass filled with pure water and a second one filled with sugared water are placed together in a hermetically closed case at constant temperature),最初好象什么也没有发生,产生了完全平衡的印象(it appears at first that nothing happens, and the impression of complete equilibrium is created)。可是,隔了一天左右以后,可注意到清水由于蒸汽压较高,慢慢地蒸发出来并凝聚在糖溶液上(But after a day or so it is noticed that the pure water, owing to its higher vapour pressure, slowly evaporates and condenses on the solution)。糖溶液溢出来了。只有当清水全部蒸发后,糖才达到了均匀地分布在所有水中的目的(Only after the pure water has totally evaporated has the sugar reached its aim of being equally distributed among all the liquid water available )。

这些最后是缓慢地向平衡的趋近,决不能误认为是生命(These ultimate slow approaches to equilibrium could never be mistaken for life, and we may disregard them here)。在这里我们可以不去理会它。只是为了免得别人指责我不够准确,所以我才提到它。

57. 以“负熵”为生(IT FEEDS ON 'NEGATIVE ENTROPY')

一个有机体能够避免很快地衰退为惰性的“平衡”态,似乎成了如此难解之谜(It is by avoiding the rapid decay into the inert state of 'equilibrium' that an organism appears so enigmatic),以致在人类思想的最早时期,曾经认为有某种特殊的非物质的力,或超自然的力(活力,“隐得来希” [viva, entelechy ])在有机体里起作用(so much so, that from the earliest times of human thought some special non-physical or supernatural force  was claimed to be operative in the organism),现在还有人是这样主张的。


生命有机体是怎样避免衰退的呢 (How does the living organism avoid decay) ?明白的回答是:靠吃、喝、呼吸以及(植物是)同化 ( By eating, drinking, breathing and [in the case of plants] assimilating)。专门的术语叫新陈代谢(metabolism)”。这词来源于希腊字,意思是变化或交换。交换什么呢 (Exchange of what) ?最初的基本观点无疑是指物质的交换 ( Originally the underlying idea is, no doubt, exchange of material)(例如,新陈代谢这个词在德文里就是指物质的交换 [the German for metabolism is Stoffwechsel ])。认为物质的交换应该是本质的东西的说法是荒谬的(That the exchange of material should be the essential thing is absurd. )。氮、氧、硫等的任何一个原子和它同类的任何另一个原子都是一样的,把它们进行交换又有什么好处呢 (Any atom of nitrogen, oxygen, sulphur, etc., is as good as any other of its kind; what could be gained by exchanging them)?过去有一个时候,曾经有人告诉我们说,我们是以能量为生的,这样,使我们的好奇心暂时地沉寂了( For a while in the past our curiosity was silenced by being told that we feed upon energy )。在一些很先进的国家(我记不清是德国还是美国,或者两个国家都是[ I don't remember whether it was Germany or the U.S.A. or both ])的饭馆里,你会发现菜单上除了价目而外,还标明了每道菜所含的能量(In some very advanced country  you could find menu cards in restaurants indicating, in addition to the price, the energy content of every dish.)。不用说,这简直是很荒唐的(Needless to say, taken literally, this is just as absurd.)。因为一个成年有机体所含的能量跟所含的物质一样,都是固定不变的(For an adult organism the energy content is as stationary as the material content )。既然任何一个卡路里跟任何另一个卡路里的价值是一样的,那么,确实不能理解纯粹的交换会有什么用处(Since, surely, any calorie is worth as much as any other calorie, one cannot see how a mere exchange could help)。

在我们的食物里,究竟含有什么样的宝贵东西能够使我们免于死亡呢(What then is that precious something contained in our food which keeps us from death)?那是很容易回答的(That is easily answered)。每一个过程、事件、事变--你叫它们什么都可以(Every process, event, happening –call it what you will),一句话,自然界中正在进行着的每一件事,都是意味着它在其中进行的那部分世界的熵的增加(everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on.)。因此,一个生命有机体在不断地增加它的熵(Thus a living organism continually increases its entropy )--你或者可以说是在增加正熵( produces positive entropy)--并趋于接近最大值的熵的危险状态,那就是死亡(thus tends to approach the dangerous state of maximum entropy, which is of death)。要摆脱死亡,就是说要活着,唯一的办法就是从环境里不断地汲取负熵(It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy),我们马上就会明白负熵是十分积极的东西(which is something very positive as we shall immediately see.)。有机体就是赖负熵为生的(What an organism feeds upon is negative entropy.)。或者,更确切地说,新陈代谢中的本质的东西,乃是使有机体成功地消除了当它自身活着的时候不得不产生的全部的熵(to put it less paradoxically, the essential thing in metabolism is that the organism succeeds in freeing itself from all the entropy it cannot help producing while alive)。

58. 熵是什么(WHAT IS ENTROPY)?


熵是什么?我首先要强调指出,这不是一个模糊的概念或思想,而是一个可以计算的物理学的量(Let me first emphasize that it is not a hazy concept or idea, but a measurable physical quantity),就象是一根棍棒的长度,物体的任何一点上的温度,某种晶体的熔化热,以及熔化一种物体的比热等(just like of the length of a rod, the temperature at any point of a body, the heat of fusion of a given crystal or the specific heat of any given substance)。在温度处于绝对零度时(大约在-273℃),任何一种物体的熵等于零(At the absolute zero point of temperature [ roughly -273°C ] the entropy of any substance is zero)。当你以缓慢的、可逆的、微小的变化使物体进入另一种状态时 (When you bring the substance into any other state by slow, reversible little steps)(甚至因此而使物体改变了物理学或化学的性质,或者分裂为两个或两个以上物理学或化学性质不同的部分 [even if thereby the substance changes its physical or chemical nature or splits up into two or more parts be of different physical or chemical nature ]),熵增加的总数是这样计算的:在那个步骤中你必须供给的每一小部分热量,除以供给热量时的绝对温度,然后把所有这些求得的商数加起来 ( the entropy increases by an amount which is computed by dividing every little portion of heat you had to supply in that procedure by the absolute temperature at which it was supplied -and by summing up all these small contributions )。举一个例子,当你熔解一种固体时,它的熵的增加数就是:熔化热除以熔点温度。由此,你可看到计算熵的单位是卡/度(摄氏)(就象卡是热量的单位或厘米是长度的单位一样)。

59. 熵的统计学意义(THE STATISTICAL MEANING OF ENTROPY)

为了消除经常笼罩在熵上的神秘气氛,我已简单地谈到了这个术语的定义(I have mentioned this technical definition simply in order to remove entropy from the atmosphere of hazy mystery that frequently veils it )。这里对我们更为重要的是有序和无序的统计学概念的意义 (the bearing on the statistical concept of order and disorder ),它们之间的关系已经由玻尔兹曼和吉布斯在统计物理学方面的研究所揭示 (a connection that was revealed by the investigations of Boltzmann and Gibbs in statistical physics )。这也是一种精确的定量关系,它的表达式是:熵 = k logD,k是所谓的玻尔兹曼常数( Boltzmann constant )(=3.2983E-24卡/℃),D是有关物质的原子无序状态的数量的量度(D a quantitative measure of the atomistic disorder of the body in question)。要用简短的非专业性的术语对D这个量作出精确的解释几乎是不可能的(To give an exact explanation of this quantity D in brief non-technical terms is well-nigh impossible)。它所表示的无序,一部分是那种热运动的无序,另一部分是存在于随机混合的、不是清楚地分开的各种原子或分子中间的无序(The disorder it indicates is partly that of heat motion, partly that which consists in different kinds of atoms or molecules being mixed at random, instead of being neatly separated )。例如,上面例子中的糖和水的分子。这个例子可以很好地说明玻尔兹曼的公式。糖在所有水面上逐渐地“溢出”就增加了无序D,从而增加了熵(因为D的对数是随D而增加的)。同样十分清楚的是,热的任何补充都是增加热运动的混乱(any supply of heat increases the turmoil of heat motion),就是说增加了D,从而增加了熵(increases D and thus increases the entropy)。只要看下面的例子就清楚了,当你熔化一种晶体时,由于你破坏了原子或分子的整齐而不变的排列,并把晶格变成了连续变化的随机分布(it is particularly clear that this should be so when you melt a crystal, since you thereby destroy the neat and permanent arrangement of the atoms or molecules and turn the crystal lattice into a continually changing random distribution.)。

一个孤立的系统,或一个在均匀环境里的系统(为了目前的考虑,我们尽量把它们作为我们所设想的系统的一部分),它的熵在增加(An isolated system or a system in a uniform environment increases its entropy ),并且或快或慢地接近于最大值的熵的惰性状态(more or less rapidly approaches the inert state of maximum entropy )。现在我们认识到,这个物理学的基本定律正是事物接近混乱状态的自然倾向(We now recognize this fundamental law of physics to be just the natural tendency of things to approach the chaotic state)(这种倾向,跟写字台上放着一大堆图书、纸张和手稿等东西表现出的杂乱情况是同样的),除非是我们在事先预防它。(在这种情况下,同不规则的热运动相类似的情况是,我们不时地去拿那些图书杂志等,但又不肯化点力气去把它们放回原处。)


60. 从环境中引出“有序”以维持组织(ORGANIZATION MAINTAINED BY EXTRACTING 'ORDER' FROM THE ENVIRONMENT)

一个生命有机体通过不可思议的能力来推迟趋向热力学平衡(死亡)的衰退,我们如何根据统计学理论来表达呢(How would we express in terms of the statistical theory the marvellous faculty of a living organism, by which it delays the decay into thermodynamical equilibrium [death] )?我们在前面说过:以负熵为生(It feeds upon negative entropy)”,就象是有机体本身吸引了一串负熵去抵消它在生活中产生的熵的增加,从而使它自身维持在一个稳定的而又很低的熵的水平上 ( attracting, as it were, a stream of negative entropy upon itself, to compensate the entropy increase it produces by living and thus to maintain itself on a stationary and fairly low entropy level )

假如
D是无序的度量,它的倒数1 / D可以作为有序的一个直接度量。因为1 / D 的对数正好是D的负对数,玻尔兹曼的方程式可以写成这样:负熵= k log (l/D).

因此,“负熵”的笨拙的表达可以换成一种更好一些的说法( Hence the awkward expression 'negative entropy' can be he replaced by a better one ):取负号的熵,它本身是有序的一个量度 ( entropy, taken with the negative sign, is itself a measure of order ) 。这样,一个有机体使它本身稳定在一个相当高的有序水平上(等于熵的相当低的水平上 [ = fairly low level of entropy ] )的办法,确实是在于从它的环境中不断地吸取秩序 ( Thus the device by which an organism maintains itself stationary at a fairly high level of he orderliness really consists continually sucking orderliness from its environment.)。这个结论比它初看起来要合理些。不过,可能由于相当繁琐而遭到责难。其实,就高等动物而言,我们是知道这种秩序的,它们是完全以此为生的 ( Indeed, in the case of higher animals we know the kind of orderliness they feed upon well enough ),就是说,被它们作为食物的、复杂程度不同的有机物中,物质的状态是极有序的 (the extremely well-ordered state of matter in more or less complicated organic compounds, which serve them as foodstuffs.

)。动物在利用这些食物以后,排泄出来的是大大降解了的东西,然而不是彻底的分解,因为植物还能利用它 (After utilizing it they return it in a very much degraded form –not entirely degraded, however, for plants can still make use of it. )。(当然,植物是在日光中取得“负熵” 最有力供应的)

 

第七章 生命是以物理学定律为基础的吗(Is Life Based on the Laws of Physics)?

61. 在有机体中可以指望有新的定律(NEW LAWS TO BE EXPECTED IN THE ORGANISM)

总之,在这最后一章中我希望阐明的是,根据我们已知的关于生命物质的结构,我们一定会发现,它的活动方式是无法归结为物理学的普遍定律的(we must be prepared to find it working in a manner that cannot be reduced to the ordinary laws of physics)。这不是由于有没有什么“新的力量”在支配着生命有机体内单一原子的行为,只是因为它的构造同迄今在物理实验室中试验过的任何东西都是不一样的(And that not on the ground that there is any 'new force' or what not, directing the behaviour of the single atoms within a living organism, but because the construction is different from a anything we have yet tested in the physical laboratory)。浅显地说,一位只熟悉热引擎的工程师,在检查了一台电动机的构造以后,会发现它是按照他还没有懂得的原理在工

作的。他会发现,他很熟悉的制锅用的铜,在这里却成了很长的铜丝绕成了线圈;他还会发现,他很熟悉的制杠杆和汽缸的铁,在这里却是嵌填在那些铜线圈的里面。他深信这是同样的铜和同样的铁,服从于自然界的同样的规律,这一点他是对的(To put it crudely, an engineer, familiar with heat engines only, will, after inspecting the construction of an electric motor, be prepared to find it working along principles which he does not yet understand. He finds the copper familiar to him in kettles used here in the form of long, wires wound in coils; the iron familiar to him in levers and bars and steam cylinders here filling the interior of those coils of copper wire. He will be convinced that it is the same copper and the same iron, subject to the same laws of Nature, and he is right in that)。可是,不同的构造却给他准备了一种全然不同的作功方式(The difference in construction is enough to prepare him for an entirely different way of functioning )。他是不会认为电动机是由幽灵驱动的,尽管它不用蒸汽只要按一下开关就运转起来了(He will not suspect that an electric motor is driven by a ghost because it is set spinning by the turn of a switch, without boiler and steam )。

62. 生物学状况的评述(REVIEWING THE BIOLOGICAL SITUATION)

在有机体的生命周期里展开的事件,显示出一种美妙的规律性和秩序性(The unfolding of events in the life cycle of an organism exhibits an admirable regularity and orderliness),我们碰到过的任何一种无生命物质都是无法与之匹敌的(unrivalled by anything we meet with in inanimate matter)。我们发现,它是受一群秩序性最高的原子所控制的,在每个细胞的原子总数里,这种原子团只占了很小的一部分(We find it controlled by a supremely well-ordered group of atoms, which represent only a very small fraction of the sum total in every cell )。而且,根据我们已经形成的关于突变机制的观点,我们断定,在生殖细胞的“占统治地位的原子”团里,只要很少一些原子的位置发生移动,就能使有机体的宏观的遗传性状中出现一个明显的改变(the dislocation of just a few atoms within the group of 'governing atoms' of the germ cell suffices to bring about a well-defined change in the large-scale hereditary characteristics of the organism)。

这些事实无疑是我们时代的科学所揭示的最感兴趣的事实(These facts are easily the most interesting that science has revealed in our day.)。我们也许会发现它们终究还不是完全不可接受的(We may be inclined to find them, after all, not wholly unacceptable)。一个有机体在它自身集中了“秩序之流(stream of order)”,从而避免了衰退到原子混乱(thus escaping that the decay into atomic chaos)--从合适的环境中“吸取秩序(drinking orderliness)”--这种惊人的天赋似乎同“非周期性固体(aperiodic solids)”,即染色体分子(chromosome molecules)的存在有关。这种固体无疑代表了我们所知道的最高级的有序的原子集合体(which doubtless represent the highest degree of well-ordered atomic association we know of)--比普通的周期性晶体的有序高得多(much higher than the ordinary periodic crystal)--它是靠每个原子和每个自由基在固体里发挥各自的作用(in virtue of the individual role every atom and every radical is playing here)。

简单地说,我们亲眼看到了现存的秩序显示了维持自身和产生有序事件的能力(To put it briefly, we witness the event that existing order displays the power of maintaining itself and of producing orderly events)。这种说法听上去似乎是很有道理的,然而它之所以似乎有道理,无疑地是由于我们汲取了有关社会组织的经验和涉及到有机体活动的其他事件的经验(That sounds plausible enough, though in finding it plausible we, no doubt, draw on experience concerning social organization and other events which involve the activity of organisms)。所以,它有点象一种恶性循环的论证(so it might seem that something like a vicious circle is implied)。

63. 物理学状况的综述(SUMMARIZING THE PHYSICAL SITUATION)

不管怎样,必须反复强调的一点是,对于物理学家来说,这种事态非但不是似乎有道理的,而且是最令人鼓舞的,因为它是空前的(However that may be, the point to emphasize again and again is that to the physicist the state of affairs is not only not plausible but most exciting, because it is unprecedented)。同一般的看法相反,受物理学定律支配的事件的有规律的进程,决不是原子的一种高度有序的构型的结果(Contrary to the common belief the regular course of events, governed by the laws of physics, is never the consequence one well-ordered configuration of atoms)--除非原子构型本身不象在周期性晶体里,也不象在由大量相同分子组成的液体或气体里那样地多次重复(not unless that configuration of atoms repeats itself a great number of times, either as in the periodic crystal or as in a liquid or in a gas composed of a great number of identical molecules)。

甚至在化学家处理一种很复杂的分子时,还总是面临着大量的同样的分子(Even when the chemist handles a very complicated molecule in vitro he is always faced with an enormous number of like molecules.)。他把化学定律应用于这些分子(To them his laws apply.)。比如,他会告诉你,在某个开始了一分钟以后,有一半的分子起了反应,二分钟后四分之三的分子起了反应(He might tell you, for example, that one minute after he has started some particular reaction half of the molecules will have reacted, and after a second minute three-quarters of them will have done so.)。可是,你如果能盯住某一个分子的进程,化学家也就无法预言这个分子究竟是在起了反应的分子中间,还是在还没有起反应的分子中间(But whether any particular molecule, supposing you could follow, its course, will be among those which have reacted or among those which are still untouched, he could not predict.)。这纯粹是个机遇的问题(That is a matter of pure chance)。

这并不是一种纯理论性的猜想(This is not a purely theoretical conjecture)。也不是说我们永远无法观察到一小群原子,或者甚至是单个原子的命运(It is not that we can never observe the fate of a single small group of atoms or even of a single atom )。有时我们是能观察到的(We can, occasionally)。但无论何时我们这样做了,我们能找到的是完全的不规则性,只在平均上才能让协作产生规则性(But whenever we do, we find complete irregularity, co-operating to produce regularity only on the average)。第一章里我们举过一个例子。悬浮在液体中的一颗微粒的布朗运动,是完全不规则的(The Brownian movement of a small particle suspended in a liquid is completely irregular.)。可是,如果有许多同样的微粒,它们将通过不规则的运动引起有规则的扩散现象(But if there are many similar particles, they will by their irregular movement give rise to the regular phenomenon of diffusion)。


单个放射性原子的蜕变是观察得到的(The disintegration of a single radioactive atom is observable)(它发射出一粒“子弹”,在荧光屏上会引起一次可见的闪烁现象)。可是,如果把单个放射性原子给你,它可能的寿命比一只健康的麻雀要短得多(But if you are given a single radioactive atom, its probable lifetime is much less certain than that of a healthy sparrow)。真的,关于单个放射性原子只能这样说(Indeed, nothing more can be said about it than this):只要它活着(而且可能活几千年),它在下一秒钟里毁灭的机会,不管机会是大还是小,总是相同的(as long as it lives [ and that may be for thousands of years ]the chance of its blowing up within the next second, whether large or small, remains the same.)。这种明显地不存在单个的决定,结果还是产生了大量的、同一种放射性原子衰变的精确的指数定律 ( This patent lack of individual determination nevertheless results in the exact exponential law of decay of a large number of radioactive atoms of the same kind ) 。

64. 明显的对比(THE STRIKING CONTRAST)

在生物学中,我们面临着一种完全不同的状况 (In biology we are faced with an entirely different situation)。只存在于一个副本中的单个原子团有秩序地产生了一些事件( A single group of atoms existing only in one copy produces orderly events ),并根据最微妙的法则,在相互之间以及同环境之间作难以置信的的调整 ( marvellously tuned in with each other and us number of with the environment according to most subtle laws )。我说只存在于一个副本中,是因为我们毕竟还有卵和单细胞有机体的例子。在高等生物发育的以后阶段里,副本增多了,那是确实的 (In the following stages of a higher organism the copies are multiplied, that is true ) 。可是,增加到什么程度呢 (But to what extent)?我知道,在长成的哺乳动物中有的可达10的14次方。那是多少 (What is that)!只有一立方英寸空气中的分子数目的百万分之一 ( Only a millionth of the number of molecules in one cubic inch of air )。数量虽然相当大,可是聚结起来时它们只不过形成了一小滴液体(Though comparatively bulky, by coalescing they would form but a tiny drop of liquid )。你再看看它们实际分布的方式吧(And look at the way they are actually distributed)。每一个细胞正好容纳了这些副本中的一个(或二个,如果我们还记得二倍体),既然我们知道这个小小的中央机关的权力是在孤立的细胞里(Since we know the power this tiny central office has in the isolated cell ),那么,每个细胞难道不象是用共同的密码十分方便地互通消息的、遍布全身的地方政府的分支机构吗(do they not resemble stations of local government dispersed through the body, communicating with each other with great ease, thanks to the code that is common to all of them)?


这真是个异想天开的描述,有点象出自诗人的而不是科学家的手笔(Well, this is a fantastic description, perhaps less becoming a scientist than a poet.)。然而,这并不需要诗人的想象,而只需要有明确而严肃的科学反映去认识我们现在面对着的事件(However, it needs no poetical imagination but only clear and sober scientific reflection to recognize that we are here obviously faced with events),就是说,指挥这些事件有秩序地、有规则地展开的 “机制” 同物理学的 “概率机制” 完全是两码事(whose regular and lawful unfolding is guided by a 'mechanism' entirely different from the 'probability mechanism' of physics)。这些还只不过是观察到的事实而已,即每个细胞中的单个原子集合体之中,现在一份(有时是两份)副本中的单个原子集合体之中,而且它产生的事件却是有序的典范( For it is simply a fact of observation that the guiding principle in every cell is embodied in a single atomic association existing only one copy [ or sometimes two ] –and a fact of observation that it may results in producing events which are a paragon of orderliness.)。对此,我们感到惊异也罢,认为它好象很有道理也罢,反正一个很小的但却是高度组织化的原子团是能够以这种方式起作用的(Whether we find it astonishing or whether we find it quite plausible that a small but highly organized group of atoms be capable of acting in this manner ),这是空前的情况,是生命物质以外任何地方都还不知道有的情况(the situation is unprecedented, it is unknown anywhere else except in living matter )。研究无生命物质的物理学家和化学家们,从来没有看到过他们必须按这种方式来进行解释的现象(The physicist and the chemist, investigating inanimate matter, have never witnessed phenomena which they had to interpret in this way )。正因为以前没有提出过这种事例,所以我们的理论没有包括它(The case did not arise and so our theory does not cover it ),我们的统计学理论是很值得骄傲的,因为它使我们看到了幕后的东西(our beautiful statistical theory of which we were so justly proud because it allowed us to look behind the curtain),使我们注意到从原子和分子的无序中提出精确的物理学定律的庄严的有序(to watch the magnificent order of exact physical law coming forth from atomic and molecular disorder );还因为它揭示了最重要的、最普遍的、无所不包的熵增加的定律是无需特殊的假设就可以理解的(because it revealed that the most important, the most general, the all-embracing law of entropy could be understood without a special assumption ad hoc),因为熵并非别的东西,只不过是分子本身的无序而已(for it is nothing but molecular disorder itself)。

65. 产生有序的两种方式(TWO WAYS OF PRODUCING ORDERLINESS)

在生命的发展中遇到的秩序性有不同的来源(The orderliness encountered in the unfolding of life springs from a different source.)。有序事件的产生,看来有两种不同的“机制”(It appears that there are two different 'mechanisms' by which orderly events can be produced):“有序来自无序(which produces order from disorder)”的 “统计学机制(statistical mechanism)”,和 “有序来自有序” 的一种新机制(producing order from order)。对于没有偏见的人来说,第二个原理似乎简单得多,合理得多(To the unprejudiced mind the second principle appears to be much simpler, much more plausible)。这是无疑的。正因为如此,所以物理学家是如此自豪地赞成另一种方式,即赞成“有序来自无序(order-from-disorder)”的原理。在自然界中,不仅实际上是遵循这个原理,而且只有这个原理才使我们理解自然界事件的长期发展,首先是理解这种发展的不可逆性(which is actually followed in Nature and which alone conveys an understanding of the great line of natural events, in the first place of their irreversibility)。可是,我们不能指望由此得出的“物理学定律”能直截了当地解释生命物质的行为(But we cannot expect that the 'laws of physics' derived from it suffice straightaway to explain the behaviour of living matter),因为这些行为的最惊人的特点,是明显地主要以“有序来自有序(order from order)”的原理为基础的。你不能指望两种全然不同的机制会提出同一种定律(You would not expect two entirely different mechanisms to bring about the same type of law),正象你不能指望用你的弹簧锁钥匙去开你邻居的门。

因此,我们不必因为物理学的普遍定律难以解释生命而感到沮丧。因为根据我们对生命物质结构的了解,这正是预料中的情况。我们必须准备去发现在生命物质中、占支配地位的新的物理学定律。这种定律,我们姑且不称它是一种超物理学定律,可是难道能称之为非物理学定律吗?

66. 新原理并不违背物理学(THE NEW PRINCIPLE IS NOT ALIEN TO PHYSICS)

不,我不那么想(No. I do not think that)。因为这个涉及到的新原理是真正的物理学原理(For the new principle that is involved is a genuinely physical one):在我看来,这不是别的原理,只不过是量子论原理的再次重复(it is, in my opinion, nothing else than the principle of quantum theory over again)。要说明这一点,我们就要说得详细些,包括对前面作出的所有物理学定律全以统计学为基础的论断作一番推敲,但不是作修正(To explain this, we have to go to some length, including a refinement, not to say an amendment, of the assertion previously made, namely, that all physical laws are based on statistics.)。

这个一再重复的论断,是不可能不引起矛盾的(This assertion, made again and again, could not fail to arouse contradiction.)。因为确实有很多现象,它们许多突出的特点是明显地直接以“有序来自有序”的原理为基础的,并且同统计学和分子的无序看来是毫无关系的(For, indeed, there are phenomena whose conspicuous features are visibly based directly on the 'order-from-order' principle and appear to have nothing to do with statistics or molecular disorder)。

太阳系的秩序,行星的运动,几乎是无限期地维持着(The order of the solar system, the motion of the planets, is maintained for an almost indefinite time.)。此时此刻的星座是同金字塔时代的任何一个具体时刻的星座是一脉相承的(The constellation of principle this moment is directly connected with the constellation at any particular moment in the times of the Pyramids);从现在的星座可以追溯到那时的星座,反之亦然(it can be traced back to it, or vice versa)。曾经预测过历史上的日食和月食,并且发现这种预测同历史上的记载几乎是完全符合的(Historical eclipses have been calculated and have been found in close agreement with historical records),在某些情况下,甚至用来校正公认的年表(or have even in some cases served to correct the accepted chronology)。这些预测不包括任何一种统计学,它们是以牛顿的万有引力定律作为唯一的依据的(These calculations do not imply any statistics, they are based solely on Newton's law of universal attraction.)。

一台好的时钟,或者任何类似的机械装置的有规则运动,似乎跟统计学是无关的(Nor does the regular motion of a good clock or any similar mechanism appear to have anything to do with statistics.)。总之,所有纯粹机械的事件,看来是明确而直接地遵循着“有序来自有序”的原理(In short, all purely mechanical events seem to follow distinctly and directly the 'orderfrom- order' principle.)。如果我们说“机械的”,必须在广义上来使用这个名词(And if we say 'mechanical', the term must be taken in a wide sense.)。你们知道,有一种很有用的时钟,是以电站有规则地输送电脉冲来运转的(A very useful kind of clock is, as you know, based on the regular transmission of electric pulses from the power station)。

我记得马克斯·普朗克(Max Planck)写过一篇很有意思的小文章,题目是《动力学型和统计学型的定律》(The Dynamical and the Statistical Type of Law)(德文是《动力学和统计学的合法性》[ Dynamische und Statistische Gesetzmassigkeit ] )。这两者的区别,正好就是我们在这里称之为“有序来自有序”和“有序来自无序”的区别。那篇文章旨在表明控制宏观事件的统计学型定律,是如何由被认为是控制微观事件、即控制单原子和单分子的相互作用的“动力学”定律所组成的 ( The object of that paper was to show how the interesting statistical type of law, controlling large-scale events, is constituted from the dynamical laws supposed to govern the small-scale events, the interaction of the single atoms and molecules )。宏观的机械现象,如行星或时钟的运动等,说明了后一种类型的定律(The latter type is illustrated by large-scale mechanical phenomena, as the motion of the planets or of a clock, etc.)。(译注:指有序来自无序)

这样看来,被我们一本正经地当作了解生命的真正线索的“新原理”,即“有序来自有序”的原理,对物理学来说,完全不是新东西(Thus it would appear that the 'new' principle, the order- from-order principle, to which we have pointed with great solemnity as being the real clue to the understanding of life, is not at all new to physics.)。普朗克甚至还摆出了论证它的优先权的架势(Planck's attitude even vindicates priority for it )。我们似乎得出了可笑的结论,即了解生命的线索是建立在纯粹机械论的基础之上的(We seem to arrive at the ridiculous conclusion that the clue to the understanding of life is that it is based on a pure mechanism),是普朗克那篇文章所说的“钟表装置”的基础之上的(a 'clock-work' in the sense of Planck's paper)。我看,这个结论既不是可笑的,也不是全错的,但是对它是“不可全信”的(The conclusion is not ridiculous and is, in my opinion, not entirely wrong, but it has to be taken 'with a very big grain of salt'.)。


67. 钟的运动(THE MOTION OF A CLOCK)

让我们来精确地分析一台真的钟的运动(Let us analyse the motion of a real clock accurately.)。它决计不是一种纯粹机械的现象(It is not at all a purely mechanical phenomenon.)。一台纯粹机械的钟不必有发条,也不必上发条(A purely mechanical clock would need no spring, no winding.)。它一旦开始运动,就将永远进行下去(Once set in motion, it would go on forever)。一台真正的钟,如果不用发条,在摆动了几下以后就停摆了,它的机械能已转化为热能(A real clock without a spring stops after a few beats of the pendulum, its mechanical energy is turned into heat.)。这是一种无限复杂的原子过程(This is an infinitely complicated atomistic process.)。物理学家提出的这种运动的一般图景,迫使其承认相反的过程并不是完全不可能的(The general picture the physicist forms of it compels him to admit that the inverse process is not entirely impossible ):一台没有发条的钟,依靠消耗它自己的齿轮的热能和环境的热能,可能突然地开始走动了(a springless clock might suddenly begin to move, at the expense of the heat energy of its own cog wheels and of the environment)。物理学家一定会说:时钟体验了布朗运动的一次非常灵敏的扭力天平(The clock experiences an exceptionally in tense fit of Brownian movement.),静电计或电流计就能一直发生这种事情。在这个例子时钟当然是绝对不可能的(In the case of a clock it is, of course, infinitely unlikely)。

一台时钟的运动能否归因于动力学型或统计学型的合法事件(用普朗克的说明 [to use Planck's expressions] ),这取决于我们的态度( Whether the motion of a clock is to be assigned to the dynamical or to the statistical type of lawful events depends on our attitude )。称它为一种动力学现象时,我们是集中注意于有规则的运行 ( In calling it a dynamical phenomenon we fix attention on the regular going that can be secured ),一根比较松的发条就可以产生这种运行,而这根发条克服的热运动的干扰是很微小的,所以我们可以忽略不计 (by a comparatively weak spring, which overcomes the small disturbances by heat motion, so that we may disregard them )。可是,如果我们还记得,没有发条,时钟就会因摩擦阻力而渐渐地停摆(But if we remember that without  spring the clock is gradually slowed down by friction),我们认为,这种过程只能理解为一种统计学的现象(we find that this process can only be understood as a statistical phenomenon)。

然而,认为时钟中的摩擦效应和热效应是无足轻重的观点,也许是一种来自实用的观点(However insignificant the frictional and heating effects in a clock may be from the practical point of view);而没有忽视这些效应的第二种,无疑是更基本的一种看法,即使在我们面对着用发条开动的时钟有规则地运动时,(even when we are faced with the based on a regular motion of a clock that is driven by a spring),这也是基本的看法。因为它决不认为开动的机制真是离开了过程的统计学性质(For it must not be believed that the driving mechanism really does away with the statistical nature of the process)。真实的物理学图景包括了这样的可能性:即使是一架正常运行的时钟,通过消耗环境中的热能,会立刻使它的运动全部逆转过去,以及向后倒退地工作,重新上紧自己的发条(The true physical picture includes the possibility that even  a regularly going clock should all atonce invert its motion and, working backward, rewind its own spring at the expense of the heat of the environment )。这种事件的可能性,同没有发动装置的时钟的“布朗运动大发作”相比,正好是“半斤八两”(The event is just a little less likely than a 'Brownian fit' of a clock without driving mechanism.)。

68. 钟表装置毕竟是统计学的(CLOCKWORK AFTER ALL STATISTICAL)

现在我们来作一番回顾。我们已经分析过的“简单”例子是代表了许多其他的例子--事实上,是代表了所有这些逃脱了分子统计学的无所不包的原理的例子(The 'simple' case we have analysed is representative of many others -in fact of all such appear to evade the all-embracing principle of molecular statistics.)。由真正的物理学的物质(不是想象中的东西 [ in contrast to imagination] )构成的钟表装置,并不是真正的“钟表装置”(Clockworks made of real physical matter are not true 'clockworks'.)。机遇的因素可能是或多或少地减少了,时钟突然之间全然走错了的可能性也许是极小的,不过,但它们却总还是保存在背景之中 (The element of chance may be more or less reduced, the likelihood of the clock suddenly going altogether wrong may be infinitesimal, but it always remains in the background.)。即使在天体运行中,摩擦和热力的不可逆影响也不是没有的(Even in the motion of the celestial bodies irreversible frictional and thermal torsional influences are not wanting.)。于是,由于潮汐的摩擦,地球的旋转逐渐地减慢,随之而来的是月球逐渐地远离地球(Thus the rotation of the earth is slowly diminished by tidal friction, and along with this of course, reduction the moon gradually recedes from the earth),如果地球是一个坚硬无比的旋转着的球体,就不会发生这种情况(which would not happen if the earth were a completely rigid rotating sphere)。

事实上,“物理学的钟表装置”仍是清楚地显示了十分突出的“有序来自有序”的特点(Nevertheless the fact remains that 'physical clock-works' visibly display very prominent 'order-from-order' features)——物理学家正是在有机体遇到这种特点时,使他们深受鼓舞的(the type that aroused the physicist's excitement when he encountered them in the organism)。这两者看来毕竟还有某些共同之处(It seems likely that the two cases have after all something in common.)。可是,共同点是什么,以及究竟是什么样的差别才使得有机体成为新奇的和前所未有的例子,这些还有待于了解(It remains to be seen what this is and what is the striking difference which makes case of the organism after all novel and unprecedented)。

69. 能斯脱定理(NERNST'S THEOREM)

一个物理学系统--和任何种类原子相关的系统 --什么时候才显示出“动力学的定律(dynamical law)”,在普朗克的意义上说 ( in Planck's meaning)或“钟表装置的特点(clock-work features)” 呢?量子论对这个问题有一个非常简短的回答 ( Quantum theory has a very short answer to this question ),就是说,在绝对零度时(at the absolute zero of temperature)。当接近零度时,分子的无序对物理学事件不再有什么意义了(As zero temperature is approached the molecular disorder ceases to have any bearing on physical events)。顺便说一下,这个事实不是通过理论而发现的,而是在广泛的温度范围内仔细地研究了化学反应,再把结果外推到零度--绝对零度实际上是达不到的--而发现的(This fact was, by the way, not discovered by theory, but by carefully investigating chemical reactions over a wide range of temperatures and extrapolating the results to zero temperature -which cannot actually be reached.)。这是沃尔塞·能斯脱(Walther Nernst)的著名的“热定理(Heat Theorem)”,毫不夸张地说,这个定理有时授予“热力学第三定律(Third Law of Thermodynamics)”的光荣称号(第一定律是能量原理 [energy principle],第二定律是熵的原理 [entropy principle])。

量子论为能斯脱的经验定律提供了理性的“基础” (Quantum theory provides the rational foundation of Nernst's empirical law ),也使我们能够估计出,一个系统为了表现出一种近似于“动力学”的行为必须密切地接近绝对零度到什么程度 (how closely a system must approach to the absolute zero in order to display an approximately 'dynamical' behaviour. )。在任何一种具体的情况下,多少温度是实际上等于绝对零度呢 (What temperature is in any particular case already practically equivalent to zero)?

你千万别认为这个温度一定是极低的低温 (Now you must not believe that this always has to be a very low temperature )。其实,就是在室温下,熵在许多化学反应中都是起着极其微不足道的作用,能斯脱的发现就是由这种事实引起的 (Indeed, Nernst's discovery was induced by the fact that even at room  temperature entropy plays a astonishingly insignificant role in many chemical reactions)(让我再说一遍,熵是分子无序的直接量度,即它的对数[entropy is a direct measure ofmolecular disorder, viz. its logarithm] )。

70. 摆钟实际上是在零度(THE PENDULUM CLOCK IS VIRTUALLY AT ZERO TEMPERATURE)

对于一台摆钟又能说些什么呢(What about a pendulum clock)?对于一台摆钟来说,室温实际上就等于零度 (For a pendulum clock room temperature is practically equivalent to zero)。这就是它为什么是“动力学地”工作的理由(That is the reason why it works 'dynamically' )。你如果把它冷却,它还是一样地继续进行工作(It will continue to work as it does if you cool it)(假如你已经洗清了所有的油渍)!可是,你如果把它加热,加热到室温之上,它就不再继续工作了,因为它最后将要熔化了(But it does not continue to work if you heat it above room temperature, for it will eventually melt )。

71. 钟表装置与有机体之间的关系(THE RELATION BETWEEN CLOCKWORK AND ORGANISM .)


看上去这似乎是无关紧要的,不过,我认为它确实是击中了要害 (That seems very trivial but it does, I think, hit the cardinal point ) 。钟表装置是能够“动力学地”工作的,因为它是固体构成的( Clockworks are capable of functioning 'dynamically', because they are built of solids),这些固体靠伦敦-海特勒力而保持着一定的形状,在常温下这种力足以避免热运动的无序趋向 ( which are kept in shape by London- Heider forces, strong enough to elude the disorderly tendency of heat motion at ordinary temperature )。

我认为现在有必要再讲几句话,来揭示钟表装置同有机体之间的相似点 ( Now, I think, few words more are needed to disclose the point of resemblance between a clockwork and an organism ),简单而又唯一的相似点就是后者也是依靠一种固体--构成遗传物质的非周期性具体--而大大地摆脱了热运动的无序 ( It is simply and solely that the latter also hinges upon a solid –the aperiodic crystal forming the hereditary substance, largely withdrawn from the disorder of heat motion )。可是,请不要指责我把染色体纤维称为“有机的机器的齿轮(cogs of the organic machine)”--这个比喻,至少不是没有深奥的物理学理论作为依据的 (at least not without a reference to the profound physical theories on which the simile is based)。

最明显的特点是:第一,齿轮在一个多细胞有机体里奇妙的分布,这点我在第64节中曾作了诗一般的描述(the curious distribution of the cogs in a many-celled organism, for which I may refer to a very the somewhat poetical description on ***);其次,这种单个的齿轮不是粗糙的人工制品,而是沿着上帝的量子力学的路线完成的最精美的杰作(secondly, by fact that the single cog is not of coarse human make, but is the finest masterpiece ever achieved along the lines of the Lord's quantum mechanics )。


(完)

http://blog.sciencenet.cn/blog-449420-552349.html 

http://www.ppmy.cn/news/749101.html

相关文章

JPEG驱动(一)

JPEG驱动(一) 标签: applicationtiff存储算法imagetable 2012-05-18 21:08 1615人阅读 评论(0) 收藏 举报 本文章已收录于: 分类: linux内核(15) 作者同类文章 X 最近要研究多媒体了&…

为什么我的cpld需要重新上电才能工作_大宇伺服放大器故障维修上电无显示

大宇伺服放大器故障维修上电无显示使用带有增量脉冲编码器的CNC控制,每次重新打开机器时都必须参考该机器。使用绝对脉冲编码器时,有一块备用电池,可在机床掉电时保留其位置。当CNC机床重新启动时,它询问编码器其位置,…

ds6708 symbol 驱动_Symbol DS6708扫描器

Moto-Symbol DS6708 手持式数字成像仪扫描器 Symbol DS6708条码扫描器专为识读机动车合格证二维条码而设计,可以与机动车合格证系统连接,识读机动车合格证上的二维条码。 Symbol DS6708条码扫描器卓越的数字扫描器,丰厚的技术投资回报 讯宝科…

ds6708 symbol 驱动_SymbolDS6708

物理参数: 扫描枪体积(长x宽x高):13.7 x 8.6 x 20.3 cm 重量:340 g 电压和电流:额定(不带可选的RFID模块):510%VDC450mA 额定(带可选的RFID模块):510%VDC1.2A 颜色:浅黑色 性能参数 Symbol DS9808-SR 和 Symbol DS9808-LR 成像仪模式 光源:瞄准模式:650nm 激光二极管 照明:630n…

STM32F1与STM32CubeIDE编程实例-超声波测距传感器驱动

超声波测距传感器驱动 超声波测距模块HC-SR04提供2cm-400cm非接触测量功能,测距精度可达3mm。 该模块包括超声波发射器、接收器和控制电路。 HC-SR04 的工作非常简单直接。模块发出 40 KHz 的超声波,在被障碍物反射后,反射回模块。 通过使用传播时间和声音的速度,我们可以…

ESP32设备驱动-MPL3115A2压力传感器驱动

MPL3115A2压力传感器驱动 文章目录 MPL3115A2压力传感器驱动1、MPL3115A2介绍2、硬件准备3、软件准备4、驱动实现1、MPL3115A2介绍 MPL3115A2 是一款紧凑型压阻式绝对压力传感器,具有 I2C 数字接口。 MPL3115A2 具有 20 kPa 至 110 kPa 的宽工作范围,该范围涵盖了地球上的所…

什么是服务器 ?服务器常见的系统和技术有哪些?

就像他的名字一样,服务器在网络上为不同用户提供不同内容的信息、资料和文件。可以说服务器就是Internet网络上的资源仓库,正是因为有着种类繁多数量庞大内容丰富的服务器的存在,才使得Internet如此的绚丽多彩。 服务器的种类和功能: (1) WW…

【STM32篇】驱动HC_SR04超声波测距模块

CH_SR04 一、简介 1.产品特点 HC_SR04超声波测距模块可提供2cm-400cm的非接触式测距感测功能,测距精度高达3mm;模块包括超声波发射器,接收器与控制电路。 基本工作原理: (1)采用IO口TRIG触发测距&#xff0…