5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)

news/2024/11/17 2:36:37/

1、DataX简介

1.1 DataX概述

DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

源码地址:https://github.com/alibaba/DataX

1.2 DataX支持的数据源

DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图。
在这里插入图片描述

2、DataX架构原理

2.1 DataX设计理念

为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
在这里插入图片描述

2.2 DataX框架设计

DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
Reader:数据采集模块,负责采集数据源的数据,将数据发送给Framework。
Writer:数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
Framework:用于连接Reader和Writer,作为两者的数据传输通道,并处理缓存,流控,并发,数据转换等核心技术问题。

2.3 DataX运行流程

下面用一个DataX作业生命周期的时序图说明DataX的运行流程、核心概念以及每个概念之间的关系。
在这里插入图片描述

2.4 DataX调度决策思路

举例来说,用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:
1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。
2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。
3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。

2.5 DataX和Sqoop对比

在这里插入图片描述

3、DataX部署

1、下载DataX安装包并上传到hadoop102的/opt/software
下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
2、解压datax.tar.gz到/opt/module

 tar -zxvf datax.tar.gz -C /opt/module/

3、自检,执行如下命令

 python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json

4、出现如下内容,则表明安装成功
在这里插入图片描述

4、DataX使用

4.1 DataX使用概述

4.1.1 DataX任务提交命令

Datax的使用十分简单,用户只需要根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可。

 python bin/datax.py path/to/your/job.json
4.1.2 DataX配置文件格式

可以使用如下命名查看DataX配置文件模板。

python bin/datax.py -r mysqlreader -w hdfswriter

配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地。
在这里插入图片描述

4.2 同步MySQL数据到HDFS案例

案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录
需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。
下面分别使用两种模式进行演示。

4.2.1 MySQLReader之TableMode

1、编写配置文件
(1)创建配置文件base_province.json

vim /opt/module/datax/job/base_province.json

(2)配置文件内容如下

{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"column": ["id","name","region_id","area_code","iso_code","iso_3166_2"],"where": "id>=3","connection": [{"jdbcUrl": ["jdbc:mysql://hadoop102:3306/gmall"],"table": ["base_province"]}],"password": "000000","splitPk": "","username": "root"}},"writer": {"name": "hdfswriter","parameter": {"column": [{"name": "id","type": "bigint"},{"name": "name","type": "string"},{"name": "region_id","type": "string"},{"name": "area_code","type": "string"},{"name": "iso_code","type": "string"},{"name": "iso_3166_2","type": "string"}],"compress": "gzip","defaultFS": "hdfs://hadoop102:8020","fieldDelimiter": "\t","fileName": "base_province","fileType": "text","path": "/base_province","writeMode": "append"}}}],"setting": {"speed": {"channel": 1}}}
}

2、配置文件说明
(1)Reader参数说明
在这里插入图片描述
(2)Writer参数说明
在这里插入图片描述
注意事项:
HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(‘’),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。
(3)Setting参数说明
在这里插入图片描述
3、提交任务
(1)在HDFS创建/base_province目录
使用DataX向HDFS同步数据时,需确保目标路径已存在

hadoop fs -mkdir /base_province

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py job/base_province.json 

4、查看结果
(1)DataX打印日志
在这里插入图片描述
(2)查看HDFS文件

hadoop fs -cat /base_province/* | zcat
4.2.2 MySQLReader之QuerySQLMode

1、编写配置文件
(1)修改配置文件base_province.json
(2)配置文件内容如下

{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"connection": [{"jdbcUrl": ["jdbc:mysql://hadoop102:3306/gmall"],"querySql": ["select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"]}],"password": "000000","username": "root"}},"writer": {"name": "hdfswriter","parameter": {"column": [{"name": "id","type": "bigint"},{"name": "name","type": "string"},{"name": "region_id","type": "string"},{"name": "area_code","type": "string"},{"name": "iso_code","type": "string"},{"name": "iso_3166_2","type": "string"}],"compress": "gzip","defaultFS": "hdfs://hadoop102:8020","fieldDelimiter": "\t","fileName": "base_province","fileType": "text","path": "/base_province","writeMode": "append"}}}],"setting": {"speed": {"channel": 1}}}
}

2、配置文件说明
(1)Reader参数说明
在这里插入图片描述
3、提交任务
(1)清空历史数据

 hadoop fs -rm -r -f /base_province/*

(2)进入DataX根目录
(3)执行如下命令

python bin/datax.py job/base_province.json

4、查看结果
(1)DataX打印日志
在这里插入图片描述
(2)查看HDFS文件

hadoop fs -cat /base_province/* | zcat
4.2.3 DataX传参

通常情况下,离线数据同步任务需要每日定时重复执行,故HDFS上的目标路径通常会包含一层日期,以对每日同步的数据加以区分,也就是说每日同步数据的目标路径不是固定不变的,因此DataX配置文件中HDFS Writer的path参数的值应该是动态的。为实现这一效果,就需要使用DataX传参的功能。
DataX传参的用法如下,在JSON配置文件中使用${param}引用参数,在提交任务时使用-p"-Dparam=value"传入参数值,具体示例如下。
1、编写配置文件
(1)修改配置文件base_province.json

(2)配置文件内容如下

{"job": {"content": [{"reader": {"name": "mysqlreader","parameter": {"connection": [{"jdbcUrl": ["jdbc:mysql://hadoop102:3306/gmall"],"querySql": ["select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"]}],"password": "000000","username": "root"}},"writer": {"name": "hdfswriter","parameter": {"column": [{"name": "id","type": "bigint"},{"name": "name","type": "string"},{"name": "region_id","type": "string"},{"name": "area_code","type": "string"},{"name": "iso_code","type": "string"},{"name": "iso_3166_2","type": "string"}],"compress": "gzip","defaultFS": "hdfs://hadoop102:8020","fieldDelimiter": "\t","fileName": "base_province","fileType": "text","path": "/base_province/${dt}","writeMode": "append"}}}],"setting": {"speed": {"channel": 1}}}
}

2、提交任务
(1)创建目标路径

 hadoop fs -mkdir /base_province/2020-06-14

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py -p"-Ddt=2020-06-14" job/base_province.json

3、查看结果

hadoop fs -ls /base_province

4.3 同步HDFS数据到MySQL案例

案例要求:同步HDFS上的/base_province目录下的数据到MySQL gmall 数据库下的test_province表。
需求分析:要实现该功能,需选用HDFSReader和MySQLWriter。
1、编写配置文件
(1)创建配置文件test_province.json
(2)配置文件内容如下

{"job": {"content": [{"reader": {"name": "hdfsreader","parameter": {"defaultFS": "hdfs://hadoop102:8020","path": "/base_province","column": ["*"],"fileType": "text","compress": "gzip","encoding": "UTF-8","nullFormat": "\\N","fieldDelimiter": "\t",}},"writer": {"name": "mysqlwriter","parameter": {"username": "root","password": "000000","connection": [{"table": ["test_province"],"jdbcUrl": "jdbc:mysql://hadoop102:3306/gmall?useUnicode=true&characterEncoding=utf-8"}],"column": ["id","name","region_id","area_code","iso_code","iso_3166_2"],"writeMode": "replace"}}}],"setting": {"speed": {"channel": 1}}}
}

2、配置文件说明
(1)Reader参数说明
在这里插入图片描述
(2)Writer参数说明
在这里插入图片描述
3、提交任务
(1)在MySQL中创建gmall.test_province表

DROP TABLE IF EXISTS `test_province`;
CREATE TABLE `test_province`  (`id` bigint(20) NOT NULL,`name` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`region_id` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`area_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`iso_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,`iso_3166_2` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,PRIMARY KEY (`id`)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

(2)进入DataX根目录
(3)执行如下命令

 python bin/datax.py job/test_province.json 

4、查看结果
(1)DataX打印日志
(2)查看MySQL目标表数据
在这里插入图片描述

5、DataX优化

5.1 速度控制

DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在数据库可以承受的范围内达到最佳的同步速度。
在这里插入图片描述
注意事项:
1.若配置了总record限速,则必须配置单个channel的record限速
2.若配置了总byte限速,则必须配置单个channe的byte限速
3.若配置了总record限速和总byte限速,channel并发数参数就会失效。因为配置了总record限速和总byte限速之后,实际channel并发数是通过计算得到的:
计算公式为:
min(总byte限速/单个channel的byte限速,总record限速/单个channel的record限速)

5.2 内存调整

当提升DataX Job内Channel并发数时,内存的占用会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,需调大JVM的堆内存。
建议将内存设置为4G或者8G,这个也可以根据实际情况来调整。
调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,加上对应的参数,如下:
python datax/bin/datax.py --jvm=“-Xms8G -Xmx8G” /path/to/your/job.json


http://www.ppmy.cn/news/744488.html

相关文章

怎么查微信聊天记录?我来教你几招,祝你无忧。

怎么查微信删除的聊天记录?很多人都有这个疑问,毕竟微信现在已经是国民第一大社交软件,里面不仅有家人,还有朋友、同事、客户,普通聊天记录误删了也就误删了,可是一旦重要的聊天记录丢失就简直就是灭顶之灾,毕竟里面还有很多的重要的信息数据是牵扯到自己的工作的。那么…

微信聊天记录导出(iOS) [2019.7.24]

博客地址:https://www.busby.com.cn/2019/07/24/微信聊天记录导出(iOS)[2019.7.24]/ 最前 前不久很久,我的小傻瓜女票误删了我们俩的微信聊天记录,也没有iOS系统或PC端微信聊天记录的备份。无奈微信聊天记录在微信那…

如何从手机上恢复误删的微信聊天记录

微信用户最担心的事情莫过于聊天记录误删,或者通讯录被清空。误删聊天记录其实还好,如果通讯录被彻底清空,那么只能重新加好友。随着人们生活、工作节奏加快,微信成为人们之间联系的纽带之一,不得不错,其它…

iphone手机微信聊天记录恢复办法

iphone手机微信聊天记录恢复办法。作为手机领域的领头品牌,iphone的迭代速度出乎人意料之外,在误删好友之后,重新添加回自己的朋友圈,两人的聊天记录会被系统自动清理,此时如果需要找回之前相关的聊天信息,…

误删微信聊天记录觉得手足无措?免费教你如何恢复

误删微信聊天记录怎么找回?微信是我们日常社交最重要的软件,无论是日常的沟通感情,交流工作,还是收发工资、转账收款,无不是用微信操作的。也就进一步导致微信里面聊天记录格外重要,一旦聊天记录误删&#…

OPPO手机便签怎么设置字体颜色?便签调整字体颜色方法

OPPO是一个非常受年轻人青睐的手机品牌,它的手机不仅外观设计时尚轻薄,而且拍照清晰、系统流畅,并且拥有高中低不同档次的价位可供消费者选择。虽然OPPO手机的使用体验非常不错,但是有一部分用户也遇到了一些问题,例如…

【如何维护一个学习交流群】

制定群组规范和目标 确定群组的主题和目标 主题: 正能量,互帮互勉,共同进步 目标: 让每一个群友可以成长为一个可以独挡一面的工程师制定一份明确的行为准则,促进积极、友好和有意义的讨论 正常聊天式,无特…

U盘文件损坏删除文件办法

将U盘插到手机上,用手机删除损坏的文件,本人测试有效!