大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用5-利用VGG模型做毕加索风格图像迁移,本文将利用VGG模型实现毕加索风格图像迁移的方法。首先,我们将简要说明图像风格迁移的原理,然后使用PyTorch框架,分步骤地实现毕加索风格图像迁移的算法。最后,我们将展示实验结果,验证算法的有效性。
目录
一、引言
二、图像风格迁移原理
2.1. VGG网络
2.2. 内容损失
2.3. 风格损失
2.4. 总损失
三、算法实现
四、总结
一、引言
图像风格迁移是一种将一幅图像的风格应用到另一幅图像的技术。在本文中,我们将实现基于CNN的毕加索风格迁移算法,将毕加索的艺术风格应用到任意图像上。
图像风格转化:
二、图像风格迁移原理
2.1. VGG网络
我们使用预训练的VGG-19网络作为特征提取器,它可以捕捉图像的内容和风格特征
2.2. 内容损失
内容损失衡量输出图像与内容图像在某个层的特征表示之间的差异。我们通常使用较高层的特征表示,以保留图像的整体内容。
其中是内容图像,是输出图像,是给定图像在层的特征表示。
2.3. 风格损失
风格损失衡量输出图像与风格图像在各层的特征表示之间的差异。我们通常使用Gram矩阵来衡量风格特征。
其中是风格图像,是给定图像在层的Gram矩阵,和分别是层的通道数和特征图的大小。
2.4. 总损失
我们的目标是最小化内容损失和风格损失的加权和。
其中和是内容损失和风格损失的权重。
三、算法实现
import torch
import torchvision.transforms as transforms
from PIL import Imagedef load_image(image_path, max_size=None, shape=None):image = Image.open(image_path)if max_size:scale = max_size / max(image.size)size = tuple([int(dim * scale) for dim in image.size])image = image.resize(size, Image.ANTIALIAS)if shape:image = image.resize(shape, Image.LANCZOS)transform = transforms.Compose([transforms.ToTensor()])image = transform(image)[:3, :, :].unsqueeze(0)return imagedef deprocess(tensor):transform = transforms.Compose([transforms.Normalize((-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225),(1 / 0.229, 1 / 0.224, 1 / 0.225)),transforms.ToPILImage()])if tensor.dim() == 4:# If we have a batch of imagesoutput = []for image in tensor:image = image.clone().detach().cpu()image = image.squeeze(0)image = transform(image)output.append(image)return output[0]elif tensor.dim() == 3:# If we have a single imagetensor = tensor.clone().detach().cpu()tensor = tensor.squeeze(0)tensor = transform(tensor)return tensorelse:raise ValueError("Expected input tensor to be 3D or 4D")return transform(tensor)import torch.nn as nn
import torchvision.models as modelsclass StyleTransferModel(nn.Module):def __init__(self, content_layers, style_layers):super(StyleTransferModel, self).__init__()self.vgg = models.vgg19(pretrained=True).featuresself.content_layers = content_layersself.style_layers = style_layersdef forward(self, x):content_features = []style_features = []#print(list(self.vgg.named_children()))for name, layer in self.vgg.named_children():x = layer(x)if name in self.content_layers:content_features.append(x)if name in self.style_layers:style_features.append(x)return content_features, style_featuresdef gram_matrix(tensor):_, c, h, w = tensor.size()tensor = tensor.view(c, h * w)gram = torch.mm(tensor, tensor.t())return gramimport torch.optim as optimdef style_transfer(content_image_path, style_image_path, output_image_path, max_size=400, content_weight=1, style_weight=1e6, iterations=600):content_image = load_image(content_image_path, max_size=max_size)style_image = load_image(style_image_path, shape=content_image.shape[-2:])output_image = content_image.clone().requires_grad_(True)model = StyleTransferModel(content_layers=['10'], style_layers=['0','2','5','7','12'])#model.to(device)content_features = model(content_image)[0]style_features = model(style_image)[1]style_grams = [gram_matrix(feature) for feature in style_features]optimizer = optim.Adam([output_image], lr=0.01)for i in range(iterations):output_features = model(output_image)content_output_features = output_features[0]style_output_features = output_features[1]content_loss = 0.0style_loss = 0.0for target_feature, output_feature in zip(content_features, content_output_features):content_loss += torch.mean((output_feature - target_feature) ** 2)for target_gram, output_feature in zip(style_grams, style_output_features):output_gram = gram_matrix(output_feature)style_loss += torch.mean((output_gram - target_gram) ** 2) / (output_gram.numel() ** 2)total_loss = content_weight * content_loss + style_weight * style_lossoptimizer.zero_grad()total_loss.backward(retain_graph=True)optimizer.step()if (i + 1) % 5 == 0:print(f"Iteration {i + 1}/{iterations}: Loss = {total_loss.item()}")output_image = deprocess(output_image)print(output_image)output_image.save(output_image_path)content_image_path = "123.png"
style_image_path = "style.png"
output_image_path = "out.png"style_transfer(content_image_path, style_image_path, output_image_path)
我们只要输入要迁移的图片123.png,图片的风格style.png,就可以生成图片了
4. 总结
本文详细介绍了基于CNN网络的毕加索风格图像迁移的原理和实现方法,使用PyTorch框架实现了一个简单有效的算法。实验结果表明,该方法可以成功地将毕加索风格应用到任意图像上,生成高质量的艺术作品。