【文本挖掘】关键词提取

news/2024/11/29 10:46:40/

统计关键词前20位

数据集如下:
在这里插入图片描述
地址:

https://github.com/Algernon98/github-store/tree/main/data./text./genshin.

from gensim import corpora, models
import config
import jieba
import jieba.analyse
import train
from codecs import openstopwords_path = config.stopwords_path
segmented_path = config.segmented_path
test_path = config.test_path
raw_path = config.raw_path
result_path = config.result_path
topic_num = 30def get_stopwords_set(file_name):with open(file_name, 'r', encoding='utf-8') as f:return set([line.strip() for line in f])def get_words_list(file_name, stop_word_file):stop_words_set = get_stopwords_set(stop_word_file)word_list = []with open(file_name, 'r', encoding='utf-8') as f:for line in f:tmp_list = list(jieba.cut(line.strip(), cut_all=False))word_list.append([i for i in tmp_list if i not in stop_words_set])return word_listdef extract_theme(raw_file, stop_word_file, num_topics=10):result = []# 列表,每个元素也是列表,即分词后的词语列表word_list = get_words_list(raw_file, stop_word_file)# 生成文档的词典,每个此与一个整形索引值对应word_dict = corpora.Dictionary(word_list)# 词频统计,转化为空间向量格式corpus_list = [word_dict.doc2bow(text) for text in word_list]lda = models.ldamodel.LdaModel(corpus=corpus_list, id2word=word_dict, num_topics=num_topics, alpha='auto')for pattern in lda.show_topics(num_topics=num_topics, num_words=1, formatted=False):result.append(pattern[1][0][0])return resultdef main():files = train.get_files(raw_path)file_name = result_path + "/theme_result.txt"f_word_result = open(file_name, "w+", encoding='utf-8')f_word_result.write("主题词提取" + "\n")for f in files:f_word_result.write('\n' + f.split("\\")[-1][:-4] + ":\n")topics = extract_theme(f, stopwords_path, 100)topic_list = []for t in topics:if t not in topic_list and len(topic_list) < topic_num:topic_list.append(t)f_word_result.write(t + '\n')print(f + ' save to: ' + file_name + " ok.")f_word_result.close()if __name__ == '__main__':main()

结果:

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/text-feature-master/text-feature-master/theme.py
Building prefix dict from the default dictionary …
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 1.033 seconds.
Prefix dict has been built successfully.
data/raw\捕鸟者的故事.txt save to: data/result/theme_result.txt ok.
data/raw\日月前事.txt save to: data/result/theme_result.txt ok.
data/raw\浮槃歌卷.txt save to: data/result/theme_result.txt ok.
data/raw\镜子与魔法师的故事.txt save to: data/result/theme_result.txt ok.
data/raw\阿赫玛尔的故事.txt save to: data/result/theme_result.txt ok.

进程已结束,退出代码0

主题词提取捕鸟者的故事:
少年
捕鸟
筹备
密林
长久
战争
悲伤
少女
说
之鸟
鸟
十分日月前事:
写
天上
法涅斯
诱惑
种子
原初
发光
太阳
囚禁
说
国王
禁令
园丁
时刻
火
影子
先祖
第一次
到来
嗣
记录
这种
秘密
制造
全部
日月
大王
奇迹
归途
立约浮槃歌卷:
作者
彻知
迈出
毫无保留
逐诈
深渊
第一句
缺漏
遗迹
拥有者
遗体
簇拥
语言
无法
多么
律法
真的
槃
相比
节
浮
无人
当时
精灵
念诵
永
情人
备注
宛若
馈镜子与魔法师的故事:
一夜
总是
镜子
魔法师
女人
漫漫长夜
昔日
故事
宫殿
这座
话语
般的
已阿赫玛尔的故事:
不可
阿赫玛
芬芳
沙丘
神王
一夜
回
灾祸
蒙昧
手杖
七重
加
书记
想起
沙漠
众
迷宫
智慧
过去
旅团
怎能
一手
生命
住民
震动
惩罚
陛下
统帅
理性

情感分析

https://github.com/shibing624/pysenti

from pysenti import ModelClassifiertexts = ["我爱阿卓","我喜欢阿卓","阿卓最好了","超喜欢阿卓捏","没有阿卓我会难过","阿卓,坏!"]m = ModelClassifier()
for i in texts:r = m.classify(i)print(i, r)

我爱阿卓 {‘positive_prob’: 0.8466820791295006, ‘negative_prob’: 0.15331792087049945}
我喜欢阿卓 {‘positive_prob’: 0.6747967727946668, ‘negative_prob’: 0.32520322720533323}
阿卓最好了 {‘positive_prob’: 0.5, ‘negative_prob’: 0.5}
超喜欢阿卓捏 {‘positive_prob’: 0.7779255451248865, ‘negative_prob’: 0.22207445487511346}
没有阿卓我会难过 {‘positive_prob’: 0.8653531007266904, ‘negative_prob’: 0.13464689927330964}
阿卓,坏! {‘positive_prob’: 0.17124756072277025, ‘negative_prob’: 0.8287524392772297}

文本提取

模板:

https://github.com/letiantian/TextRank4ZH

代码

#-*- encoding:utf-8 -*-
from __future__ import print_function
import importlib,sys
importlib.reload(sys)import sys
try:importlib.reload(sys)sys.setdefaultencoding('utf-8')
except:passimport codecs
from textrank4zh import TextRank4Keyword, TextRank4Sentencetext = codecs.open('../test/doc/01.txt', 'r', 'utf-8').read()
tr4w = TextRank4Keyword()tr4w.analyze(text=text, lower=True, window=2)   # py2中text必须是utf8编码的str或者unicode对象,py3中必须是utf8编码的bytes或者str对象print( '关键词:' )
for item in tr4w.get_keywords(20, word_min_len=1):print(item.word, item.weight)print()
print( '关键短语:' )
for phrase in tr4w.get_keyphrases(keywords_num=20, min_occur_num= 2):print(phrase)tr4s = TextRank4Sentence()
tr4s.analyze(text=text, lower=True, source = 'all_filters')print()
print( '摘要:' )
for item in tr4s.get_key_sentences(num=3):print(item.index, item.weight, item.sentence)

数据集

浮槃歌卷

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/TextRank4ZH/example/example01.py
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.489 seconds.
Prefix dict has been built successfully.
关键词:
备注 0.009742484094232517
谜题 0.00895192051928737
无法 0.008928982024858924
女主人 0.0084675400252497
人们 0.008453594560064712
王女 0.008415178312232818
君王 0.0083437750201505540.0069967061157744370.0066373846871806640.006571901190830194
知识 0.006521435305209939
全部 0.006017572251023542
缺词 0.006017572251023542
回答 0.00576187369386327050.005471815209872001
无人 0.005469906201271802
语言 0.005448693305806349
智慧 0.005328745641089529
抵御 0.005170270890198952
摧垮 0.005170270890198952关键短语:
女主人说摘要:
17 0.0172286704332726 【室罗婆耽院诃般荼,塔法佐莉的备注:本节首句中,暂时无法确定含义的词语,也可译作「农田」或「墓园」
52 0.016848163757853078 彻知的君王啊,若是你的智慧真的与人们传说的不差毫厘,
72 0.016848163757853078 彻知的君王啊,若是你的智慧真的与人们传说的不差毫厘,进程已结束,退出代码0

阿赫玛尔的故事

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/TextRank4ZH/example/example01.py
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.574 seconds.
Prefix dict has been built successfully.
关键词:
智慧 0.0143527056370796530.010845562797082157
知识 0.009491235284100272
沙丘 0.009273868947831002
镇灵 0.008765206011653781
生命 0.008700254211786216
贤者 0.0085129547268297960.008334562709858306
陛下 0.008235193740032542
成为 0.0078067466377408140.0077987907293464290.007711778318750074
君王 0.007378189784886893
灾祸 0.007095572914054973
玫瑰 0.007023821594126371
阿赫玛 0.006940470647070925
镀金 0.006864355408463337
无底 0.006713895728302868
往往 0.006630375398411197
过去 0.006439889693916835关键短语:
阿赫玛尔摘要:
4 0.033449378499342035 因此即便贵为大地四方之王,深受三大部族无数子民信仰,又被难以捉摸的镇灵崇拜,每当仰视天穹时,回想起天上的九重又九重的乐园、回想起千百年前无情的惩治,阿赫玛尔仍不免垂下高贵的头颅,发出无解的叹息
43 0.03244297229717682 他们说,阿赫玛尔的肉体在王座上渐渐腐朽,为巨虫所噬,而他的魂灵则同王都千百万尖叫的魂灵融成一体,永远在呼啸的末日中徘徊迷途,沿着蛇行的黑暗盘廊,向无底的深渊横冲直撞而去
42 0.02884013537738098 他们说,阿赫玛尔最终将他自己的智慧抽离了骨血,投入了无穷无尽、永远向着深处曲折蛇行的回廊、阶梯、门洞与雕梁进程已结束,退出代码0

白夜国馆藏

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/TextRank4ZH/example/example01.py
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.487 seconds.
Prefix dict has been built successfully.
关键词:
会 0.00945293107094898
龙蜥 0.0089851615429120450.007266934837240164
太阳 0.006848229165971737
白夜 0.0063326576390741705
没有 0.0061227516871462170.005816887054897028
人们 0.0056805923141583350.005250242836753312
世界 0.0046159719828632205
渊下 0.0044808271111565770.00441805817105551
先祖 0.0043544133305517860.004345795461616112
贤人 0.0043423433175067225
实验 0.004267520239767349
出现 0.004236880141916847
元素 0.0042106095498750280.00420227176849371450.0039254796527710310.0036239910024973070.003577253592461393
名字 0.003512549384231825
影子 0.003489354931921611
生物 0.00344462785746396750.0033825500180776616
研究 0.003260560214370052
全部 0.0032349977676337070.003177858674726537
日月 0.0031004664413358993关键短语:
白夜国摘要:
201 0.007251016661601182 著者可以忽略,或写研究所内之号,严禁暴露研究人员之古白夜国/渊下宫名或现代海祇/鸣神/稻妻式名字
229 0.006867967296295812 因为容不下海祇之血,龙蜥的身体会出现各种不良反应
191 0.006850799238337301 根据预言,它应该就是贤人所展示的太阳,用来照亮没有见过光的洞穴进程已结束,退出代码0

词云生成

代码

# -*- coding: utf-8 -*-from __future__ import print_functionimport jieba.analyse
import matplotlib.pyplot as plt
from wordcloud import WordCloud# 设置相关的文件路径
# bg_image_path = "bg_image.jpg"
text_path = './data/xiaozhu.txt'
font_path = 'msyh.ttf'
stopwords_path = 'stopword.txt'def clean_using_stopword(text):"""去除停顿词,利用常见停顿词表+自建词库:param text: 输入文本:return: 分词去停用词后的文本"""mywordlist = []seg_list = jieba.cut(text, cut_all=False)liststr = "/".join(seg_list)with open(stopwords_path,encoding='utf-8') as f_stop:f_stop_text = f_stop.read()f_stop_text = f_stop_textf_stop_seg_list = f_stop_text.split('\n')for myword in liststr.split('/'):  # 去除停顿词,生成新文档if not (myword.strip() in f_stop_seg_list) and len(myword.strip()) > 1:mywordlist.append(myword)return ''.join(mywordlist)def preprocessing():"""文本预处理:return:"""with open(text_path,encoding='utf-8') as f:content = f.read()return clean_using_stopword(content)return contentdef extract_keywords():"""利用jieba来进行中文分词。analyse.extract_tags采用TF-IDF算法进行关键词的提取。:return:"""# 抽取300个关键词,带权重,后面需要根据权重来生成词云allow_pos = ('nr',)  # 词性tags = jieba.analyse.extract_tags(preprocessing(), 300, withWeight=True)keywords = dict()for i in tags:# print("%s---%f" % (i[0], i[1]))keywords[i[0]] = i[1]print(keywords.keys())return keywordsdef draw_wordcloud():"""生成词云   1.配置WordCloud   2.plt进行显示"""# back_coloring = plt.imread('bg_pic.jpg')  # 设置背景图片# 设置词云属性wc = WordCloud(font_path=font_path,  # 设置字体background_color="white",  # 背景颜色max_words=2000,  # 词云显示的最大词数width=1200,  # 宽度height=800,   # 高度# mask=back_coloring,  # 设置背景图片)wc.generate_from_frequencies(extract_keywords())# 显示图plt.figure()plt.imshow(wc)plt.axis("off")plt.show()# 保存到本地wc.to_file("word_cloud.jpg")if __name__ == '__main__':draw_wordcloud()

数据集

白夜国馆藏

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.485 seconds.
Prefix dict has been built successfully.
dict_keys(['白夜', '原初', '渊下', '太阳', '贤人', '先祖', '大御神', '谜面', '阿倍', '龙嗣', '深海', '影子', '大神', '日月', '园丁', '实验', '常世', '谜底', '祭司', '良久', '天上', '名字', '虚空', '黑暗', '大日', '常夜', '灵木', '狭间', '谜题', '之子', '记录', '到来', '布拉克', '三界', '赫利', '树精', '预言', '纪年', '孩子', '理解', '三隅', '法涅斯', '海渊', '元素', '七位', '王座', '水文', '生活', '恐怖', '进化', '世界', '卷宗', '未曾', '大王', '归途', '子代', '生物', '乃是', '最早', '种子', '落成', '地理', '答案', '囚禁', '化身', '龙王', '寿终', '国王', '比喻', '蜃楼', '小说', '接纳', '诱惑', '常世国', '宫民', '衔枝', '箱舟', '过光', '伊洛斯', '俄斯', '海渊之土', '奥罗', '巴洛斯', '会以', '零柒大御', '腿数', '阳炎幻', '六十个', '唯一', '无始无终', '幻想', '崇拜', '海面', '版本', '本书', '腌臜', '龙蛇', '大蛇', '谨记', '大地', '特令', '去往', '研究', '崩落', '现象', '四十个', '只能', '环境', '事物', '著者', '欢欣', '禁止', '时刻', '谜语', '小童', '蛋壳', '神智', '外孙', '十二岁', '序号', '砍伐', '之下', '元年', '孙女', '寻找', '人形', '眷属', '白日', '十二个', '之神', '六十', '方圆', '长成', '筛选', '第一次', '洞窟', '畜牧', '移植', '意义', '亲近', '祈祷', '永恒', '此书', '宫里', '莲花', '拥有', '树枝', '三角', '智力', '落入', '土地', '课题', '国土', '称呼', '子孙', '这片', '珊瑚', '光明', '请问', '打败', '漫长', '大战', '后代', '宇宙', '开门', '描绘', '收获', '暴露', '尝试', '展示', '执政', '见过', '姓名', '诞生', '改称', '只不过', '百千', '寻回', '勘校', '无翼鸟', '波西', '修建', '忘记', '之地', '交流', '特性', '一群', '取材自', '肆意妄为', '安贞', '得以', '变动', '遭遇', '迷狂', '艾普', '对照组', '摔断了腿', '微风吹拂', '阿斯克', '秘密', '势力', '食物', '习惯', '雕梁', '类图书', '爱多', '俯首称臣', '御园', '御使', '掘出来', '四百余年', '塔斯', '违逆', '依序', '住民', '异常', '神尚', '有鸣', '神岛', '鸣神', '五圣隐', '初代', '宣他', '被常世', '之子们', '原如鸡', '宫才', '那龙嗣', '如草', '相抗', '选立', '赌约', '庞巨', '之感身', '之众', '此界', '虽非', '我民', '终人子', '有何', '之民一蛇', '侵攻', '真王', '它生', '衔枝后', '天地创造', '从者', '自此时起', '贵金', '高天', '火之年', '再开', '海渊之民', '千灯', '逐入', '为食', '无时不刻', '千风', '我仅', '目盲', '俄斯目', '新修', '折下灵', '一念则', '千劫', '新树', '记写', '我于', '所过', '天中', '因海', '之民', '水之事', '千风时', '之千风', '蜥界', '阳炎', '兴动', '为标', '国将', '秘法', '蛇心', '古早', '无鳞蛇', '吕羽氏', '伽玛', '西隆', '古海语', '注经', '应写', '内之号', '之古', '宫名', '神稻', '妻式', '水卷', '高体', '多眠', '而龙', '军械库'])

在这里插入图片描述

浮槃歌卷

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.476 seconds.
Prefix dict has been built successfully.
dict_keys(['王女', '女主人', '谜题', '君王', '备注', '彻知', '缺词', '智慧', '回答', '因论', '自砂海', '耽院诃般', '法佐莉', '教令', '永恒', '学者', '残卷', '挖掘出', '万国', '不差毫厘', '无人', '姣美', '目睹', '大宫', '无从', '确是', '世间', '室罗婆', '本卷', '护末', '那院', '伐护末', '院诃般', '亚莎', '有翼者', '高天', '第一个', '作者', '摧垮', '无穷尽', '缺漏', '遗迹', '特尔', '原初', '第二个', '屈服于', '永世', '身份', '赞颂', '译作', '容颜', '其下', '星辰', '仁慈', '蔷薇', '判断', '深渊', '地上', '古代', '依然', '丝绸', '香料', '女王', '宝石', '统领', '推测', '抵御', '翻译', '纡尊降贵', '无数', '开口', '晨露', '知识', '思恋', '答出', '红冠', '语言', '指代', '倾尽全力', '怨怒', '暂时', '首句', '死而复生', '波梨', '袈国', '吏兵', '辉烁', '细麻', '昼星', '装缀', '节末句', '与璃', '神临', '晨霜室', '罗婆', '塔法佐莉', '造于', '颂唱', '你作', '地向', '易逝', '满是', '芯髓', '其上', '穹灵', '逐诈', '智差', '之术', '仿拓', '劫灭', '全知', '敏黠', '之物', '荧华彻', '不毁', '原卷', '残文', '一人名', '答过', '缔下', '考研', '瞩望', '晚春', '第三句', '第四句', '身边', '主宰者', '死物', '负责', '虚像', '冷意', '谢礼', '黄金', '雅丽', '墓园', '醇香', '必将会', '明晨', '花茎', '第二句', '迷醉', '填入', '树荫下', '和煦', '沙尘', '拥有者', '芳菲', '倾慕', '五体投地', '心中', '毫无保留', '难住', '子民', '宛若', '邪魔', '萦绕', '三个', '非常感谢', '搞不清楚', '千万年', '欢欣', '重生', '碎银', '正法', '问出', '念诵', '谜语', '古往今来', '尊奉', '暖风', '正理', '降下', '如故', '箭矢', '赠与', '仆从', '篱笆', '枯萎', '难解', '立定', '万象', '盟约', '秀美', '妥善处理', '从天而降', '竟能', '破除', '悉心', '散佚', '自始至终', '升天', '俯伏', '创造者', '荆棘', '聆听', '从未见过', '胆敢', '铸成', '微光', '相仿', '诸神', '第一句', '赞许', '万千', '割断', '消逝', '稍作', '听过', '油灯', '教诲', '溪流', '词语', '精灵', '可否', '美貌', '何曾', '称得上', '盔甲', '胜过', '混淆', '眷属', '自上而下', '卷起', '迷茫', '译本', '话语', '陪伴', '俯身', '同心', '摘下', '统辖', '自下而上', '奥秘', '须臾', '甜蜜', '不动声色', '一缕', '困惑', '情人', '织物', '侍女', '捍卫', '簇拥', '芳香', '遗体', '禁忌', '传授', '远方', '身着', '迈出', '冰冷', '闪烁', '花朵', '真诚', '佩服', '绕过', '不惜', '解开', '毁灭', '臣民', '幸运', '疑虑', '坚实', '使者', '自此', '提及', '神圣', '第三个', '行礼', '月光', '掌管', '身旁', '农田', '城邦', '不由', '撰写', '痕迹', '书籍', '鲜血', '大师', '特产', '引领', '月亮', '本书', '意图', '遗憾', '宫殿', '七月', '二位', '含义', '死去', '眼中', '脚下', '世上', '我会', '乃是', '花园', '暗暗', '所致', '活着'])

在这里插入图片描述

阿赫玛尔的故事

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary …
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.474 seconds.
Prefix dict has been built successfully.
dict_keys([‘阿赫玛’, ‘智慧’, ‘镇灵’, ‘贤者’, ‘住民’, ‘之王’, ‘沙丘’, ‘蒙昧’, ‘七重’, ‘吾王’, ‘沙漠’, ‘陛下’, ‘大地’, ‘镀金’, ‘君王’, ‘知识’, ‘永远’, ‘部族’, ‘怎能’, ‘尔以’, ‘四方’, ‘蛇行’, ‘佞臣’, ‘子民’, ‘天空’, ‘九重’, ‘千百万’, ‘千百年’, ‘魂灵’, ‘智者’, ‘进言’, ‘迷宫’, ‘生命’, ‘灾祸’, ‘呼啸’, ‘禁忌’, ‘玫瑰’, ‘绿洲’, ‘一千’, ‘预料’, ‘百年’, ‘终究’, ‘惩罚’, ‘统帅’, ‘震动’, ‘一手’, ‘深处’, ‘沉默’, ‘一夜’, ‘建立’, ‘历史’, ‘无数’, ‘园艺师’, ‘恶徒’, ‘镀成’, ‘谈情’, ‘诸元素’, ‘御者’, ‘魔神’, ‘雕梁’, ‘书记’, ‘权力’, ‘力能’, ‘狂想’, ‘智识’, ‘引路人’, ‘神王’, ‘制御’, ‘夜梦’, ‘三大’, ‘鸣泣’, ‘尽享’, ‘勇壮’, ‘同猛狮’, ‘如众贤’, ‘至贤’, ‘搏龙’, ‘食尸’, ‘全失’, ‘镇灵能’, ‘长歌’, ‘起于’, ‘咒诅’, ‘王众’, ‘乞谅’, ‘应知’, ‘溺于’, ‘旧梦’, ‘醉于’, ‘哀想’, ‘足使’, ‘以应’, ‘羊之王’, ‘天罚’, ‘尽藏’, ‘才行’, ‘顿地’, ‘之主生者’, ‘迎回’, ‘深黑’, ‘凡躯’, ‘狂沙’, ‘抽离’, ‘所噬’, ‘同王’, ‘盘廊’, ‘巨墙’, ‘其上’, ‘狮鹫’, ‘于己’, ‘愚行’, ‘旅团’, ‘众砾’, ‘如铁’, ‘将振帆’, ‘漫卷’, ‘九重天’, ‘融成’, ‘愚者’, ‘歌者’, ‘王土’, ‘夜莺’, ‘妙药’, ‘孤零’, ‘呓语’, ‘弃绝’, ‘沙海’, ‘比斯’, ‘垮塌’, ‘亡者’, ‘傲视’, ‘折腰’, ‘念旧’, ‘劝诫’, ‘王座’, ‘遗落’, ‘赫尔曼’, ‘骨殖’, ‘唤回’, ‘去往’, ‘天穹’, ‘专断’, ‘贵为’, ‘长久之计’, ‘迷途’, ‘高踞’, ‘查考’, ‘巨虫’, ‘难以捉摸’, ‘子嗣’, ‘骨血’, ‘懦夫’, ‘谄媚’, ‘蹙眉’, ‘倒伏’, ‘飘忽’, ‘困于’, ‘祸患’, ‘辈出’, ‘横冲直撞’, ‘某位’, ‘预知’, ‘手杖’, ‘公牛’, ‘谗言’, ‘亵渎’, ‘无边无际’, ‘哀悼’, ‘国度’, ‘沙暴’, ‘虚空’, ‘宫阙’, ‘横渡’, ‘圆柱’, ‘仰视’, ‘逝去’, ‘无底’, ‘芬芳’, ‘无穷无尽’, ‘悔恨’, ‘回首’, ‘永生’, ‘终极’, ‘迷失’, ‘未来’, ‘相聚’, ‘霸占’, ‘年岁’, ‘化作’, ‘藏身’, ‘安乐’, ‘今人’, ‘终是’, ‘献上’, ‘报应’, ‘门洞’, ‘妄图’, ‘回廊’, ‘幸存’, ‘妄想’, ‘唤醒’, ‘宫城’, ‘凡人’, ‘听信’, ‘征服者’, ‘责怪’, ‘无忧’, ‘荣耀’, ‘阶梯’, ‘掩埋’, ‘惩治’, ‘遗忘’, ‘受惠’, ‘远古’, ‘忧伤’, ‘复活’, ‘话语’, ‘末日’, ‘散落’, ‘一夜之间’, ‘勇士’, ‘流浪’, ‘世界’, ‘席卷’, ‘堕落’, ‘真实性’, ‘计策’, ‘肉体’, ‘尖叫’, ‘高贵’, ‘逃离’, ‘哑巴’, ‘夺回’, ‘典籍’, ‘深渊’, ‘头颅’, ‘每到’, ‘狂风’, ‘乐园’, ‘良机’, ‘忧郁’, ‘盲人’, ‘腐朽’, ‘之主’, ‘埋葬’, ‘不死’, ‘发抖’, ‘荒唐’, ‘以求’, ‘悲伤’, ‘神灵’, ‘怀抱’, ‘倾听’, ‘罪恶’, ‘直言’, ‘武士’, ‘不论是’, ‘无情’, ‘掩饰’, ‘空虚’, ‘宝石’, ‘讲述’, ‘情愿’, ‘时光’, ‘毁灭’, ‘永久’, ‘预言’, ‘使者’, ‘千年’, ‘之子’, ‘多有’, ‘帝王’, ‘月光’, ‘少女’, ‘梦想’, ‘深受’, ‘徘徊’, ‘崇拜’, ‘弥补’, ‘只顾’, ‘同一个’, ‘叹息’, ‘念头’, ‘来临’, ‘权威’, ‘一体’, ‘后代’, ‘恐惧’, ‘曲折’, ‘信仰’, ‘天上’, ‘少年’, ‘寻求’, ‘超越’, ‘之人’, ‘知名’, ‘首领’, ‘王国’, ‘理性’, ‘黑暗’])

在这里插入图片描述

知乎回答:你认为《三体》中最震撼的一句话是什么?

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary …
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.479 seconds.
Prefix dict has been built successfully.
dict_keys([‘魔戒’, ‘万有引力’, ‘墓地’, ‘罗辑’, ‘人类’, ‘三体’, ‘丁仪’, ‘白艾思’, ‘宇宙’, ‘地球’, ‘智子’, ‘黑暗’, ‘五十四年’, ‘恩斯’, ‘水洼’, ‘太空’, ‘森林’, ‘面壁’, ‘太阳’, ‘落下去’, ‘钢印’, ‘女孩’, ‘远处’, ‘飞船’, ‘建造’, ‘回答’, ‘孩子’, ‘核弹’, ‘相聚’, ‘思想’, ‘耐德’, ‘忏悔’, ‘物理’, ‘一束’, ‘惠子’, ‘世界’, ‘害怕’, ‘呼叫’, ‘一切都是’, ‘降临’, ‘十几代’, ‘四维空间’, ‘规律’, ‘北海’, ‘里教’, ‘史强’, ‘叶文洁’, ‘海干’, ‘低维’, ‘程心’, ‘飞机’, ‘高维’, ‘外星’, ‘这片’, ‘所有人’, ‘舰队’, ‘或者说’, ‘上帝’, ‘肯定’, ‘漫长’, ‘眼中’, ‘警告’, ‘物理学’, ‘不到’, ‘东方人’, ‘沙漠’, ‘经济学’, ‘沙漠化’, ‘两个’, ‘安全带’, ‘城府’, ‘飞越’, ‘晚霞’, ‘再也’, ‘十分钟’, ‘青铜时代’, ‘人类文明’, ‘生命’, ‘邪恶’, ‘加速器’, ‘徐徐’, ‘战舰’, ‘假象’, ‘样儿’, ‘夕阳’, ‘深渊’, ‘感觉’, ‘引擎’, ‘离开’, ‘西洋’, ‘三条’, ‘声音’, ‘空间’, ‘惩罚’, ‘审判’, ‘沙发’, ‘子孙’, ‘统帅’, ‘以色列’, ‘蓝色’, ‘震动’, ‘感谢’, ‘愿望’, ‘陆地’, ‘恐惧’, ‘军人’, ‘笑容’, ‘安慰’, ‘不该’, ‘聚集’, ‘未来’, ‘世纪’, ‘引水员’, ‘拉菲尔’, ‘预测出’, ‘供应线’, ‘干什么’, ‘想象’, ‘这场’, ‘文明’, ‘男孩儿’, ‘冤冤相报’, ‘兴奋’, ‘一遍’, ‘露出’, ‘办公室’, ‘正确’, ‘这话’, ‘明天’, ‘攻击’, ‘目光’, ‘失败主义’, ‘消失’, ‘两次’, ‘承认’, ‘同志’, ‘现实’, ‘关键’, ‘时间’, ‘苦短’, ‘投进来’, ‘和平主义者’, ‘展开’, ‘richtext’, ‘星河’, ‘铅色’, ‘中隐入’, ‘之穹’, ‘阴着’, ‘脸装’, ‘俗里’, ‘没个’, ‘你碍’, ‘味来’, ‘总沾着’, ‘向大史’, ‘光中’, ‘大史’, ‘这枚’, ‘汪淼大史’, ‘过妈’, ‘随船’, ‘八十二’, ‘常伟思’, ‘常伟思太多’, ‘外太空’, ‘汪淼’, ‘抬眼’, ‘两色’, ‘海是’, ‘海弄’, ‘海弄海’, ‘干前’, ‘同维’, ‘有鱼’, ‘系好’, ‘有窗’, ‘面墙’, ‘俩系’, ‘当罗辑’, ‘吴岳’, ‘19’, ‘张援’, ‘朝候’, ‘产室’, ‘30’, ‘10000’, ‘汇在’, ‘滔天罪行’, ‘请主来’, ‘执剑’, ‘守护人’, ‘交接仪式’, ‘血雾’, ‘地喊出’, ‘647’, ‘白艾’, ‘没人动’, ‘杨冬’, ‘空是’, ‘用空’, ‘升三体’, ‘以爱’, ‘没人能’, ‘事上’, ‘对山杉’, ‘我用’, ‘还会升’, ‘类似’, ‘地面’, ‘血与火’, ‘国际法庭’, ‘挖墓’, ‘之外’, ‘极端分子’, ‘自虐’, ‘光灿灿’, ‘指甲油’, ‘几十亿年’, ‘刚刚’, ‘主席’, ‘古筝’, ‘信息内容’, ‘大学’, ‘第一次’, ‘悸动’, ‘和平相处’, ‘怒视’, ‘很快’, ‘维德’, ‘计算’, ‘状态’, ‘一阵’, ‘媚眼’, ‘舷窗’, ‘执行’, ‘力量’, ‘血光’, ‘唯利是图’, ‘悠着点’, ‘猛跳’, ‘巴勒斯坦人’, ‘面前’, ‘一千八百’, ‘梦呓’, ‘越陷越深’, ‘女性化’, ‘咧嘴一笑’, ‘第三十二章’, ‘看着’, ‘连山’, ‘感到遗憾’, ‘照进’, ‘长路’, ‘瞎猜’, ‘永恒不变’, ‘不可理喻’, ‘恺撒’, ‘怪怪的’, ‘扫把’, ‘可有可无’, ‘七八米’, ‘无神论者’, ‘于海洋’, ‘有生之年’, ‘夕照’, ‘捐给’, ‘计算出来’, ‘俗气’, ‘电筒’, ‘维度’, ‘初始条件’, ‘老谋深算’, ‘拘押’, ‘返航’, ‘精神力量’, ‘婆婆妈妈’, ‘决定论’, ‘玩世不恭’, ‘眼睛’, ‘神采飞扬’, ‘画儿’, ‘开时’, ‘炸得’, ‘陷进’, ‘最终目标’, ‘弧度’, ‘文明史’, ‘超重’, ‘犯有’, ‘指战员’, ‘付出代价’, ‘这一’, ‘血肉模糊’, ‘半世纪’, ‘大大咧咧’, ‘起爆’, ‘计划’, ‘有件事’, ‘待发’])

在这里插入图片描述

bilibili财报

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary …
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.534 seconds.
Prefix dict has been built successfully.
dict_keys([‘嗶哩’, ‘開支’, ‘百萬’, ‘百萬元’, ‘準則’, ‘2021’, ‘總額’, ‘我們’, ‘虧損’, ‘用戶’, ‘認會計’, ‘指標’, ‘非公’, ‘美元’, ‘經營’, ‘回購’, ‘資產’, ‘財務’, ‘美國存’, ‘轉換’, ‘同期’, ‘每股’, ‘2022’, ‘負債’, ‘無形’, ‘相關’, ‘電話’, ‘公司’, ‘增加’, ‘股權’, ‘通過’, ‘則為’, ‘淨額’, ‘收購’, ‘獲得’, ‘資料’, ‘股數’, ‘355351263391248558393538141’, ‘股份’, ‘未經’, ‘優先票’, ‘服務’, ‘激勵’, ‘投資’, ‘會議’, ‘匯率’, ‘有限公司’, ‘中國’, ‘202231’, ‘付費’, ‘廣告’, ‘股東’, ‘營業額’, ‘銷售’, ‘營業’, ‘費用’, ‘經調’, ‘業務’, ‘經調整’, ‘現金’, ‘有關’, ‘業績’, ‘數據’, ‘成本’, ‘第一季度’, ‘前瞻性’, ‘未來’, ‘價值’, ‘遊戲’, ‘電商’, ‘營銷’, ‘及攤’, ‘計劃’, ‘會計’, ‘美國’, ‘流動’, ‘狀況’, ‘金額’, ‘所得’, ‘所致’, ‘收益’, ‘日期’, ‘審計’, ‘淨營業額’, ‘新冠’, ‘市場’, ‘影響’, ‘億元’, ‘移動’, ‘研發’, ‘損為’, ‘變動’, ‘美國公’, ‘單位’, ‘淨虧損’, ‘2.545’, ‘345.80’, ‘損攤’, ‘加權’, ‘股加權’, ‘攤薄’, ‘非流動’, ‘權益’, ‘2.504’, ‘224.20’, ‘平均’, ‘增值’, ‘公告’, ‘香港’, ‘和服’, ‘疫情’, ‘展望’, ‘行政’, ‘公允’, ‘千元’, ‘財務業績’, ‘標誌’, ‘社區’, ‘30%’, ‘商業化’, ‘發展’, ‘產品’, ‘同時’, ‘淨虧’, ‘整淨’, ‘價物’, ‘建議’, ‘預計’, ‘進行’, ‘估計’, ‘消費’, ‘調整’, ‘所載’, ‘公認’, ‘審計調’, ‘節表’, ‘活動’, ‘編號’, ‘網上’, ‘投資者’, ‘作為’, ‘視頻’, ‘評估’, ‘證券’, ‘電郵’, ‘止三個’, ‘20212021202231123131’, ‘股東淨’, ‘214395307470277862’, ‘應付’, ‘普通股’, ‘收入’, ‘品牌’, ‘能力’, ‘包括’, ‘定期存款’, ‘提供’, ‘管理’, ‘付款’, ‘毛利’, ‘同比增加’, ‘重播’, ‘平台’, ‘領先視頻’, ‘日止’, ‘054.1’, ‘797.3’, ‘33%’, ‘日活’, ‘創下’, ‘經濟’, ‘減少’, ‘16%’, ‘費用戶’, ‘數量’, ‘萬元’, ‘支為’, ‘攤銷開’, ‘支通’, ‘過業務’, ‘薄虧’, ‘薄淨虧’, ‘現金及’, ‘一項’, ‘萬股’, ‘聯交所’, ‘申請’, ‘現時’, ‘確定’, ‘整淨虧’, ‘損經’, ‘參閱’, ‘結尾’, ‘八時’, ‘電話會’, ‘httpirbilibilicom’, ‘中國年’, ‘輕人’, ‘決策’, ‘認為’, ‘識別’, ‘經營業績’, ‘整體’, ‘考慮’, ‘根據’, ‘委員會’, ‘報告’, ‘書面’, ‘娛樂’, ‘行業’, ‘bilibilitpgircom’, ‘簡明合’, ‘904859095767284132’, ‘少數’, ‘歸屬’, ‘903555088014281982’, ‘股淨’, ‘股淨虧’, ‘賬款’, ‘攤銷’, ‘261453322756997’, ‘514514981’, ‘22518796771641114’, ‘338779’, ‘生效’, ‘短期’, ‘提交’, ‘流量’, ‘上市公司’, ‘首席’, ‘因素’, ‘港交所’, ‘有助’, ‘有所提高’, ‘直播’, ‘列表’, ‘提升’, ‘日均’, ‘文化’, ‘月均’, ‘一代’, ‘董事’, ‘私人’, ‘特定’, ‘收到’, ‘比增’, ‘初步’, ‘新高’, ‘月票’, ‘一步’, ‘納斯達克代’, ‘BILI’, ‘代號’, ‘9626’, ‘活躍’, ‘293.6’, ‘百萬移’, ‘動端’, ‘戶達’, ‘276.4’, ‘分別’, ‘31%’, ‘活躍用’, ‘79.4’, ‘32%’, ‘27.2’, ‘面對’, ‘發和靜態’, ‘全國範圍’, ‘面臨’, ‘總部’, ‘期間’, ‘超過’, ‘000’, ‘名員工’, ‘辦公’, ‘任務確’, ‘保員’, ‘工維持’, ‘業務運營’, ‘執行面’, ‘這些’, ‘挑戰’, ‘活用戶’, ‘穩健’, ‘增長’, ‘活躍度’, ‘單個’, ‘時長’, ‘顯著’, ‘95’, ‘分鐘’, ‘此同’, ‘堅定’, ‘份額’, ‘縱觀’, ‘及收’, ‘緊費用’, ‘宏觀’, ‘壓力’])

在这里插入图片描述

美团火锅

D:\coder\randomnumbers\venv\Scripts\python.exe D:/coder/randomnumbers/Keywords_cloud/wordCloud.py
Building prefix dict from the default dictionary …
Loading model from cache C:\Users\83854\AppData\Local\Temp\jieba.cache
Loading model cost 0.508 seconds.
Prefix dict has been built successfully.
dict_keys([‘火锅’, ‘评论’, ‘重庆火锅’, ‘四川火锅’, ‘潮汕’, ‘牛肉’, ‘串串’, ‘大斌家’, ‘自助’, ‘牛羊肉’, ‘羊肉’, ‘长沙’, ‘广场’, ‘步行街’, ‘万家’, ‘涮羊肉’, ‘五一广场’, ‘河西’, ‘地摊’, ‘宁乡’, ‘步步高’, ‘串串香’, ‘城店’, ‘胡记’, ‘北京’, ‘大学城’, ‘溪湖’, ‘毛肚’, ‘黄兴路’, ‘七七’, ‘星沙’, ‘重庆’, ‘含浦’, ‘现切’, ‘涉外经济’, ‘小火锅’, ‘技术开发区’, ‘海底’, ‘雨花’, ‘特色’, ‘德思勤’, ‘银盆岭’, ‘沙岭’, ‘望城’, ‘学院’, ‘德庄’, ‘梅溪’, ‘湘江’, ‘国际’, ‘市井’, ‘新天地’, ‘天虹’, ‘川味’, ‘丽店’, ‘茶子山’, ‘洋湖’, ‘小龙’, ‘月亮’, ‘四方’, ‘喜盈门’, ‘南路’, ‘羊蝎子’, ‘一桥’, ‘星城’, ‘达美’, ‘新城’, ‘西站’, ‘烧烤’, ‘正荣’, ‘汇店’, ‘火锅店’, ‘北路’, ‘天街’, ‘桐梓’, ‘黄兴’, ‘德思勤店’, ‘吾悦店’, ‘泉塘’, ‘星沙店’, ‘新开铺’, ‘猪肚’, ‘中心店’, ‘芙蓉’, ‘解放’, ‘草本’, ‘世纪’, ‘西路’, ‘王府井’, ‘云塘’, ‘中茂城店’, ‘九记’, ‘路店’, ‘边炉’, ‘汤锅’, ‘牛腩’, ‘运达’, ‘涉外’, ‘新村’, ‘老九’, ‘沿线’, ‘环宇’, ‘友阿奥’, ‘锅圈’, ‘食汇’, ‘食材’, ‘总店’, ‘生鲜’, ‘高铁’, ‘浏阳’, ‘特莱斯’, ‘科技园’, ‘经济’, ‘杨家山’, ‘红星’, ‘汽车’, ‘城区’, ‘城市’, ‘荟聚店’, ‘犊门’, ‘袁家岭’, ‘大斌府’, ‘阿杜打’, ‘咸嘉’, ‘榔梨镇’, ‘五江’, ‘坡子’, ‘阳光’, ‘月湖’, ‘万象’, ‘医学院’, ‘海鲜’, ‘会展中心’, ‘凯德’, ‘喜乐’, ‘商学院’, ‘公园’, ‘柴火’, ‘理工’, ‘体育’, ‘铜锅’, ‘韩国菜’, ‘北辰’, ‘烤肉’, ‘东塘’, ‘旗舰店’, ‘亭店’, ‘桂花路’, ‘王记’, ‘鲜羊里’, ‘岳麓区’, ‘粤旺’, ‘栋烂’, ‘含浦店’, ‘首店’, ‘咸嘉湖’, ‘知味居’, ‘砂之船’, ‘大众传媒’, ‘侯家塘’, ‘罗家’, ‘超市’, ‘环保’, ‘科大’, ‘阿布杜’, ‘小区’, ‘五一’, ‘树木’, ‘大牛’, ‘财富’, ‘大侠’, ‘直营店’, ‘火车站’, ‘德政’, ‘武广’, ‘中心’, ‘二十九’, ‘清泉’, ‘一环’, ‘黄土岭’, ‘大道’, ‘奥克斯’, ‘大排档’, ‘华润’, ‘洋湖店’, ‘季季’, ‘老颜头’, ‘暮云’, ‘湖店’, ‘辣度’, ‘街店’, ‘淮川’, ‘美来’, ‘荟店’, ‘顶福胜’, ‘开福区’, ‘董记’, ‘三汁’, ‘开福寺’, ‘美蛙’, ‘复地’, ‘谭鸭血’, ‘爱涮’, ‘原切’, ‘庖丁’, ‘山店’, ‘阿华’, ‘泉塘店’, ‘MeetSun’, ‘韩式’, ‘懒汉’, ‘湾子’, ‘大学’, ‘南站’, ‘螺蛳’, ‘花城’, ‘店铺’, ‘中路’, ‘新疆’, ‘小羊’, ‘大虾’, ‘潭州’, ‘农业大学’, ‘鸡窝’, ‘龙华’, ‘砂锅’, ‘老四’, ‘老友’, ‘分店’, ‘大王’, ‘大福’, ‘天马’, ‘山镇’, ‘贺龙’, ‘万国’, ‘黄花’, ‘富兴’, ‘龙湖’, ‘小牛’, ‘铁道’, ‘中南大学’, ‘浪琴’, ‘金霞’, ‘港式’, ‘永安’, ‘中南’, ‘星光’, ‘莱茵’, ‘湘雅’, ‘朝阳路’, ‘一号’, ‘珠江’, ‘门口’, ‘中海’, ‘保利’, ‘黑山羊’, ‘书院’, ‘三角洲’, ‘鲜牛’, ‘正荣店’, ‘黄花镇’, ‘老佰老’, ‘潮正’, ‘理涛’, ‘龙炎阁’, ‘袁记’, ‘川锅’, ‘马栏’, ‘岛店’, ‘附一’, ‘丽发’, ‘美店’, ‘黄小椒’, ‘奥莱店’, ‘达美店’, ‘京贵楼’, ‘西店’, ‘伍家岭’, ‘傣妹’, ‘善弟’, ‘合牛记’, ‘福盛小鲜’, ‘园店’, ‘山语’, ‘鲜切’, ‘钰樽楼’, ‘太平街’, ‘洪西店’, ‘肆匠’, ‘开福’, ‘驴庄’, ‘涂家’, ‘冲店’, ‘浦沅’, ‘悦方’, ‘潮上’, ‘顺老’, ‘赵火火’, ‘鲜焖’, ‘卜蜂’, ‘烤串’])

在这里插入图片描述


http://www.ppmy.cn/news/676292.html

相关文章

大二Web课程设计——基于HTML+CSS+JavaScript+jquery手表商城购物网站(17页)

常见网页设计作业题材有 个人、 美食、 公司、 学校、 旅游、 电商、 宠物、 电器、 茶叶、 家居、 酒店、 舞蹈、 动漫、 服装、 体育、 化妆品、 物流、 环保、 书籍、 婚纱、 游戏、 节日、 戒烟、 电影、 摄影、 文化、 家乡、 鲜花、 礼品、 汽车、 其他等网页设计题目, A…

HTML5期末大作业:手表商城网站设计——手表商城网站模板源码(17页) web期末作业设计网页_手表商城网页设计作业成品

HTML5期末大作业&#xff1a;手表商城网站设计——手表商城网站模板源码(17页) web期末作业设计网页_手表商城网页设计作业成品 常见网页设计作业题材有 个人、 美食、 公司、 学校、 旅游、 电商、 宠物、 电器、 茶叶、 家居、 酒店、 舞蹈、 动漫、 明星、 服装、 体育、 化…

测试开发工作者日记:2020.6.6

6.6号我继续维护安卓自动化测试平台&#xff0c;基本已经没啥可做的了。运行很稳定&#xff0c;并发很稳定&#xff0c;后面有失败的用例&#xff0c;就继续维护优化即可。已经在很多方面上最大程度上降低了维护成本 (之后准备嵌入wqrfnium自动维护元素算法&#xff0c;作者自…

刚刚,官宣100000个炫酷微信红包封面,速度撸!

前沿技术早知道&#xff0c;弯道超车有希望 积累超车资本&#xff0c;从关注DD开始 图文编辑&#xff1a;xj 虎年将至&#xff0c; 又到了大家秀出各自“红包封面”的时候了。 看别人都有与众不同的红包封面&#xff0c; 你emo了吗&#xff1f; 福利来袭&#xff0c;先到先得&…

MySQL不常用但非常实用的函数在项目中的应用

MySQL内置了不少函数&#xff0c;利用这些函数可以很好地在进行数据查询时候&#xff0c;进行数据处理&#xff0c;如果要查看MySQL所有的内置函数&#xff0c;可以在官网的文档中&#xff1a;Built-In Function and Operator Reference 有很详细的表格&#xff0c;列举了所有…

香港浪琴对表价格国外便宜些么?

我想买浪琴的对表&#xff0c;不知道国外会不会比国内便宜&#xff1f; 其实相对来说在中国,都是差不多的,香港更便宜一些,因为毕竟关税少了,这也是一样产品卖的贵的致命关键,香港卖将近是大陆打完折扣后的7--8折扣,不过现在的港币没有人民币值钱了,所以相对来说差不多. …

机械秒表的使用方法_浪琴 L683、L688自动上弦机械计时秒表设置方法

浪琴 L683 自动上弦机械计时秒表调校方法 具备时、分、秒和日期显示功能&#xff0c;可用于测量持续长达12小时的赛事&#xff0c;精确度可达五分之一秒。 表冠可处于两种不同位置&#xff0c;它拥有以下功能&#xff1a; 调校时间和停秒位置(标准) 当秒针经过60秒位置时&#…

SpringBoot(原理篇)

SpringBoot原理篇 自动配置 bean加载方式 xml方式声明bean 相关类&#xff1a; domain域中的实体类&#xff1a; public class Mouse { }public class Cat { }public class Dog { }测试&#xff1a; public class App1 {public static void main(String[] args) {ClassP…