文章目录
- 0 前言
- 1 简介
- 2 主要器件
- 3 监控系统
- Python 实现
- 安装 OpenCV
- motion
- mjpg-streamer
- 4 部分代码
- 5 最后
0 前言
🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是
🚩 基于树莓派的智能家庭监控系统
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:4分
- 工作量:4分
- 创新点:3分
🧿 选题指导, 项目分享:
https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md
1 简介
基于树莓派实现的智能监控系统。
2 主要器件
- 读卡器以及 SD 卡(装系统用)
- 摄像头一枚,支持 USB
- SSH连接工具(SecureCRT,Xshell)
- 宽带、路由器(家中常备)
- 装好系统的树莓派 3B+ 一只(充电器、CPU散热风扇等)
3 监控系统
市面上有很多开源的摄像头管理软件,比如 motion、mjpg-streamer,当然我们也可以用 Python 自己实现更智能的监控系统。
下面,我们分别来介绍以上三种方案。
Python 实现
为了更加智能的实现监控告警,我们采用Python +OpenCV+Wechat 实现。
安装 OpenCV
安装基础组件:
sudo apt-get update
sudo apt-get install libjpeg-dev libatlas-base-dev libjpeg-dev libtiff5-dev libpng12-dev libqtgui4 libqt4-test libjasper-dev
然后安装 OpenCV:
sudo pip3 install opencv-python
一般情况,你是不可能安装成功的,99.999% 会出现以下错误:
Collecting opencv-pythonDownloading https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl (7.4MB)45% |██████████████▍ | 3.3MB 15kB/s eta 0:04:20
THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE. If you have updated the package versions, please update the hashes. Otherwise, examine the package contents carefully; someone may have tampered with them.opencv-python from https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl#sha256=329d9d9fdd62b93d44a485aeaab4602c6f5b8555ea8bcc7dbcdc62c90cfe2c3f:Expected sha256 329d9d9fdd62b93d44a485aeaab4602c6f5b8555ea8bcc7dbcdc62c90cfe2c3fGot 869c7994c40b84ac09f244f768db9269d52d3265d376441e8516a47f24711ef2
这可能是由于网速太慢了,没有下载完整的文件,所以不完整的文件的md5和期望的不一样。
我们首先下载 whl 文件到本地:
# 浏览器直接访问就可以
https://www.piwheels.org/simple/opencv-python/opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl
然后上传到树莓派,使用以下命令安装:
sudo pip3 install opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl
如果出现以下代码,说明安装成功:
Processing ./opencv_python-3.4.4.19-cp35-cp35m-linux_armv7l.whl
Requirement already satisfied: numpy>=1.12.1 in /usr/lib/python3/dist-packages (from opencv-python==3.4.4.19)
Installing collected packages: opencv-python
Successfully installed opencv-python-3.4.4.19
运行脚本,系统会自动生成一个二维码,使用微信扫描登录即可:
python3 watchdog.py
然后,把你的狗头对准摄像头,神奇的事情就这么发生了。
motion
安装:
sudo apt-get install motion
打开 motion daemon 守护进程,让他可以一直在后台运行
sudo vim /etc/default/motion
#no修改成yes:
start_motion_daemon=yes
修改 motion 的配置文件:
sudo vim /etc/motion/motion.conf
#deamon off 改成 on
deamon on
#设置分辨率
width 800
height 600
#关闭 localhost 的限制
stream_localhost off
运行 motion:
sudo motion
停止motion:
killall motion 或者 service motion stop
现在我们的摄像头已经变成了一台网络摄像头。在chrome浏览器下访问树莓派IP>:8081
即可看到摄像头当前拍摄的画面。
不得不说,真的很耗CPU,差不多持续在60%左右,并且有一定的延迟,卡顿特别严重。
mjpg-streamer
先安装依赖:
sudo apt-get install libjpeg8-dev cmake
下载 mjpg-streamer-master 软件:
wget http://github.com/jacksonliam/mjpg-streamer/archive/master.zip
unzip master.zip
cd mjpg-streamer-master/mjpg-streamer-experimental
# 编辑配置文件
vim plugins/input_raspicam/input_raspicam.c
进去之后搜索fps,也就是按一下/键,然后输入fps,然后回车将fps、高度、宽度修改,参考下图:
然后退出到mjpg-streamer-master/mjpg-streamer-experimental路径,编译:
sudo make clean all
启动摄像头:
//启动普通 USB摄像头
./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so -w ./www"
//启动树莓派专用摄像头
./mjpg_streamer -i "./input_raspicam.so" -o "./output_http.so -w ./www"
//openwrt下启动,8090端口
mjpg_streamer -i "input_uvc.so -f 10 -r 320*240" -o "output_http.so -p 8090 -w www"
如果出现以下错误:
多插拔几次摄像头兴许就可以了。
多参数启动:
sudo mjpg_streamer -i "./input_uvc.so -r 640x480 -f 10 -n" -o "./output_http.so -p 8080 --w ./www"
# 密码访问 userid:password 改成自己的就可以
sudo mjpg_streamer -i "./input_uvc.so -r 640x480 -f 10 -n" -o "./output_http.so -p 8080 --w ./www -c userid:password"
在浏览器中打开,外网自备穿透:
http://<树莓派IP>:8080
http://<树莓派IP>:8080/?action=stream
最终画面:
这个就流畅多了,CPU差不多也占到五六十的样子,不过无碍,毕竟是4核。
4 部分代码
智能监控主要python代码:
# -*- coding: utf-8 -*-# import 进openCV的库import cv2import osimport timefrom wxpy import *"""树莓派打造智能看门狗sudo pip3 install opencv-pythonsudo pip3 install wechat_sender""" # 登录微信bot = Bot()my_friend = bot.friends().search('监控狗')[0] # 调用摄像头检测人脸并截图def camera(window_name, path_name):# Linux 不显示图形界面# cv2.namedWindow(window_name)# 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)# 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade/haarcascade_frontalface_alt.xml")# 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)num = 0while cap.isOpened():ok, frame = cap.read() # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0: # 大于0则检测到人脸for faceRect in faceRects: # 单独框出每一张人脸x, y, w, h = faceRectnum = num+1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])print("有人来了~~~")alarm(num)# 延迟 60s,不要太频繁的发送,知道来了就可以了time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可# cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break# 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows() def alarm(num):my_friend.send('有人闯进卧室了!')my_friend.send_image(os.getcwd()+"/dog/"+str(num)+".jpg") if __name__ == '__main__':camera("watchdog", os.getcwd()+"/dog")