ChatGLM-LLaMA-chinese-insturct 学习记录(含LoRA的源码理解)

news/2025/1/11 18:28:55/



前言

介绍:探索中文instruct数据在ChatGLM, LLaMA等LLM上微调表现,结合PEFT等方法降低资源需求。
Github: https://github.com/27182812/ChatGLM-LLaMA-chinese-insturct
补充学习:https://kexue.fm/archives/9138


一、实验记录

1.1 环境配置

优雅下载hugging face模型和数据集

conda update -n base -c defaults conda
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
apt-get install git-lfs
git lfs installgit clone [模型|数据集|地址]

配置conda 环境

conda env create -f env.yml -n bab
conda activate bab
pip install git+https://github.com/huggingface/peft.git

数据集
belle数据集 和 自己收集的中文指令数据集
指令数据集

{"context": Instruction:[举一个使用以下对象的隐喻示例]\nInput:[星星]\nAnswer:, "target": Answer:星星是夜空中闪烁的钻石。
}

1.2 代码理解

函数:gradient_checkpointing_enable
如何理解 gradient_checkpoint, 时间换空间,使得模型显存占用变小,但训练时长增加
PEFT的相关介绍
大模型训练——PEFT与LORA介绍
你也可以动手参数有效微调:LoRA、Prefix Tuning、P-Tuning、Prompt Tuning

1.2.1 LoRA

在这里插入图片描述
对于左右两个部分,右侧看起来像是左侧原有矩阵W WW的分解,将参数量从d ∗ d 变成了d ∗ r + d ∗ r ,在
r < < d的情况下,参数量就大大地降低了。LORA保留了原来的矩阵W,但是不让W参与训练,所以需要计算梯度的部分就只剩下旁支的A和B两个小矩阵。
蓝色部分的目标函数为:
在这里插入图片描述
加入LoRA之后:
在这里插入图片描述
但是相应地,引入LORA部分的参数,并不会在推理阶段加速(不是单纯的橙色部分进行计算),因为在前向计算的时候, 蓝色部分还是需要参与计算的,而Θ部分是凭空增加了的参数,所以理论上,推理阶段应该比原来的计算量增大一点。
在这里插入图片描述
技术细节:
在这里插入图片描述
α 可以理解我们在调整lr, α/r 实在缩放蓝色部分的输出,有助于减少训练的超参数

相关参数:
在这里插入图片描述
那么如何使用PEFT的LoRA

from peft import get_peft_model, LoraConfig, TaskTypepeft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,inference_mode=False,   r=finetune_args.lora_rank,lora_alpha=32,lora_dropout=0.1,)model = get_peft_model(model, peft_config)

其中TaskType可以设置多种任务

class TaskType(str, enum.Enum):SEQ_CLS = "SEQ_CLS"   常规分类任务SEQ_2_SEQ_LM = "SEQ_2_SEQ_LM" seq2seq任务CAUSAL_LM = "CAUSAL_LM"  LM任务TOKEN_CLS = "TOKEN_CLS"  token的分类任务:序列标注之类的

参数解释:

inference_mode = Whether to use the Peft model in inference mode.

根据苏神的介绍,LST的效果应该是优于LoRA的:
在这里插入图片描述
每层当中都有分支,可以理解为LoRA是LST的超简化版本

    def __init__(self, model, config, adapter_name):super().__init__()...self.add_adapter(adapter_name, self.peft_config[adapter_name])def add_adapter(self, adapter_name, config=None):...self._find_and_replace(adapter_name)...mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias)if self.peft_config[adapter_name].inference_mode:_freeze_adapter(self.model, adapter_name)

核心类在

 def _find_and_replace(self, adapter_name):...# 遍历整个需要训练的模型的名字,这个模型你可以理解为一个字典,拿出所有的keykey_list = [key for key, _ in self.model.named_modules()]for key in key_list:# 找到所有qkv的keyif isinstance(lora_config.target_modules, str):target_module_found = re.fullmatch(lora_config.target_modules, key)else:target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)...# 然后对于每一个找到的目标层,创建一个新的lora层# 注意这里的Linear是在该py中新建的类,不是torch的Linearnew_module = Linear(adapter_name, in_features, out_features, bias=bias, **kwargs)self._replace_module(parent, target_name, new_module, target)

replace_modul把原来的weight和bias赋给新创建的module,然后再分配到指定的设备上

    def _replace_module(self, parent_module, child_name, new_module, old_module):setattr(parent_module, child_name, new_module)new_module.weight = old_module.weightif old_module.bias is not None:new_module.bias = old_module.biasif getattr(old_module, "state", None) is not None:new_module.state = old_module.statenew_module.to(old_module.weight.device)# dispatch to correct devicefor name, module in new_module.named_modules():if "lora_" in name:module.to(old_module.weight.device)

merge\ forward部分

    def merge(self):if self.active_adapter not in self.lora_A.keys():returnif self.merged:warnings.warn("Already merged. Nothing to do.")returnif self.r[self.active_adapter] > 0:self.weight.data += (transpose(self.lora_B[self.active_adapter].weight @ self.lora_A[self.active_adapter].weight,self.fan_in_fan_out,)* self.scaling[self.active_adapter])self.merged = Truedef forward(self, x: torch.Tensor):previous_dtype = x.dtypeif self.active_adapter not in self.lora_A.keys():return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)if self.disable_adapters:if self.r[self.active_adapter] > 0 and self.merged:self.unmerge()result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)elif self.r[self.active_adapter] > 0 and not self.merged:result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)x = x.to(self.lora_A[self.active_adapter].weight.dtype)result += (self.lora_B[self.active_adapter](self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x)))* self.scaling[self.active_adapter])else:result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)result = result.to(previous_dtype)return result

评估的过程中,需要将lora部分的weight加到linear层原本的weight中,not self.merged是状态的记录,也就是说,如果设置了需要融合,而当前状态没有融合的话,就把lora部分的参数scale之后加上去,并且更新self.merged状态;

训练的过程中,确保linear本身的weights是没有经过融合过的

1.4 实验结果

chatglm-6b loss的下降不是特别多,3epoch效果也不是特别的明显,最近看到很多人反馈,不管是基于lora还是ptuning对原本的模型效果还是影响很大


二、总结

如果要基于大语言模型的FT,至少需要足够的显存,和语料,最好是将新的语料和原本的语料一起进行SFT

  • sft的原理还没有弄明白
  • 显存还需要扩充,使用deepspeed框架进行full FT,有资源谁还回去lora,ptuning呢?
  • 多轮的数据集还没有
  • 这个仓库的数据集还是,单轮的指令数据集,并没有涉及到多轮
  • 即使是官方的仓库也只是构造了多轮的训练脚本,数据集并没有提供
  • llama不跑了,只是换了一个模型而已

http://www.ppmy.cn/news/64494.html

相关文章

SpringBoot 整合第三方技术Junit+MyBatis+Druid

测试类中加两个注解就行 SpringBootTest(classes Application.class)//添加SpringBoot 的启动类&#xff0c;万无一失 RunWith(SpringJUnit4ClassRunner.class) public class SpringBootJunitTest {Testpublic void test(){System.out.println("ddddddddddddddddddd&quo…

前端面试题 —— JavaScript (二)

一、map和weakMap的区别 &#xff08;1&#xff09;Map map本质上就是键值对的集合&#xff0c;但是普通的Object中的键值对中的键只能是字符串。而ES6提供的Map数据结构类似于对象&#xff0c;但是它的键不限制范围&#xff0c;可以是任意类型&#xff0c;是一种更加完善的Ha…

2023最新版本Camtasia电脑录屏软件好不好用?

在当今数字化时代&#xff0c;屏幕录制成为了许多用户制作教学视频、演示文稿、游戏攻略等内容的首选。本文将为您介绍几款常用的电脑录屏软件&#xff0c;包括Camtasia、OBS Studio、Bandicam等&#xff0c;并对其进行功能和用户体验方面的比较&#xff0c;同时给出10款电脑录…

含分布式电源的配电网可靠性评估研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

时序预测 | Python实现AR、ARMA、ARIMA时间序列预测

时序预测 | MATLAB实现VAR和GARCH时间序列预测 目录 时序预测 | MATLAB实现VAR和GARCH时间序列预测预测效果基本介绍模型原理程序设计参考资料预测效果 基本介绍 Python实现AR、ARMA、ARIMA时间序列预测 模型原理 AR、ARMA、ARIMA都是常用的时间序列预测方法,它们的主要区别在…

camunda表达式如何使用

在Camunda中&#xff0c;表达式是一种灵活的方式&#xff0c;可以用于在流程定义和表单中计算和处理数据。表达式可以在Camunda的各个环节中使用&#xff0c;例如服务任务、网关、表单、条件等。 以下是Camunda表达式的一些常见用途&#xff1a; 1、计算值&#xff1a;表达式可…

php+vue在线课程教育学习考试系统864t7

运行环境:phpstudy/wamp/xammp等 开发语言&#xff1a;php 后端框架&#xff1a;Thinkphp5 前端框架&#xff1a;vue.js 服务器&#xff1a;apache 数据库&#xff1a;mysql 数据库工具&#xff1a;Navicat/phpmyadmin功能要求&#xff1a;可以实现首页、个人中心、学生管理、名…

MySQL定时刷新数据

一、步骤 1.查看定时策略是否开启&#xff0c;查看命令: show variables like %event_sche%; 2.显示的 event_scheduler 为 OFF 时用以下命令开启: set global event_scheduler1; 3.创建存储过程 use toursim_platform; -- 选择数据库toursim_platform delimiter // create pro…