本文图片如果访问不了,请访问:此链接
概述
TreeMap是红黑树的java实现,红黑树能保证增、删、查等基本操作的时间复杂度为O(lgN)。
首先我们来看一张TreeMap的继承体系图:
还是比较直观的,这里来简单说一下继承体系中不常见的接口NavigableMap和SortedMap,这两个接口见名知意。先说NavigableMap接口,NavigableMap接口声明了一些列具有导航功能的方法,比如:
/*** 返回红黑树中最小键所对应的 Entry*/
Map.Entry<K,V> firstEntry();/*** 返回最大的键 maxKey,且 maxKey 仅小于参数 key*/
K lowerKey(K key);/*** 返回最小的键 minKey,且 minKey 仅大于参数 key*/
K higherKey(K key);// 其他略
通过这些导航方法,我们可以快速定位到目标的 key 或 Entry。至于 SortedMap 接口,这个接口提供了一些基于有序键的操作,比如:
/*** 返回包含键值在 [minKey, toKey) 范围内的 Map*/
SortedMap<K,V> headMap(K toKey);();/*** 返回包含键值在 [fromKey, toKey) 范围内的 Map*/
SortedMap<K,V> subMap(K fromKey, K toKey);// 其他略
以上就是两个接口的介绍,很简单。至于AbstractMap和Map这里就不说了,大家有兴趣自己去看看Javadoc吧。关于TreeMap的继承体系就这里就说到这,接下来我们进入细节部分分析。
源码分析
添加
红黑树最复杂的无非就是增删了,这边我们先介绍增加一个元素,了解红黑树的都知道,当往 TreeMap 中放入新的键值对后,可能会破坏红黑树的性质。首先我们先巩固一下红黑树的特性。
-
节点是红色或黑色。
-
根节点是黑色。
-
每个叶子节点都是黑色的空节点(NIL节点)。
-
每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)。
-
从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
接下来我们看看添加到底做了什么处理:
public V put(K key, V value) {TreeMapEntry<K,V> t = root;if (t == null) {if (comparator != null) {if (key == null) {comparator.compare(key, key);}} else {if (key == null) {throw new NullPointerException("key == null");} else if (!(key instanceof Comparable)) {throw new ClassCastException("Cannot cast" + key.getClass().getName() + " to Comparable.");}}root = new TreeMapEntry<>(key, value, null);size = 1;modCount++;return null;}int cmp;TreeMapEntry<K,V> parent;Comparator<? super K> cpr = comparator;if (cpr != null) {do {parent = t;cmp = cpr.compare(key, t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}else {if (key == null)throw new NullPointerException();@SuppressWarnings("unchecked")Comparable<? super K> k = (Comparable<? super K>) key;do {parent = t;cmp = k.compareTo(t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}TreeMapEntry<K,V> e = new TreeMapEntry<>(key, value, parent);if (cmp < 0)parent.left = e;elseparent.right = e;fixAfterInsertion(e);size++;modCount++;return null;}
这边会先把根节点暂存依赖,如果根节点为null,则讲新增的这个节点设为根节点。 如果初始化的时候指定了comparator比较器,则讲其插入到指定位置,否则使用key进行比较并且插入。不断的进行比较,找到没有子节点的节点,将其插入到相应节点。(注:如果查找出有相同的值只会更新当前值,cmp小于0是没有左节点,反之没有右节点。)
新插入的树破环的红黑树规则,我们会通过fixAfterInsertion去进行相应的调整,这也是TreeMap插入实现的重点,具体我们看看他是怎么通过java实现的。
private void fixAfterInsertion(TreeMapEntry<K,V> x) {x.color = RED;while (x != null && x != root && x.parent.color == RED) {if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {TreeMapEntry<K,V> y = rightOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == rightOf(parentOf(x))) {x = parentOf(x);rotateLeft(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateRight(parentOf(parentOf(x)));}} else {TreeMapEntry<K,V> y = leftOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == leftOf(parentOf(x))) {x = parentOf(x);rotateRight(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateLeft(parentOf(parentOf(x)));}}}root.color = BLACK;}
首先将新插入的节点设置为红色,这边做了一个判断,新节点不为null,新节点不为根节点并且新节点的父节点为红色。才会进入内部的判断,因为其本身就是一个红黑树。如果新节点的父节点为黑色,则他依旧满足红黑树的特性。所以当其父节点为红色进入内部的判断。
如果新节点是其祖父节点的左子孙,则拿到其祖父节点的右儿子,也就是新节点的叔叔。如果叔叔节点是红色。则将其父节点设为黑色,讲叔父节点设为黑色,然后讲新节点直接其祖父节点。
否则如果新节点是其父节点的右节点,以其父节点进行左转,将父节点设为黑色,祖父节点设为红色,在通过祖父节点进行右转。
else内容和上述基本一致。自己分析~~
最后我们还需要将跟节点设为黑色。
我们稍微看一下,他是怎么进行左转和右转的。
// 右旋与左旋思路一致,只分析其一
// 结果相当于把p和p的儿子调换了
private void rotateLeft(Entry<K,V> p) {if (p != null) {// 取出p的右儿子Entry<K,V> r = p.right;// 然后将p的右儿子的左儿子,也就是p的左孙子变成p的右儿子p.right = r.left;if (r.left != null)// p的左孙子的父亲现在是pr.left.parent = p;// 然后把p的父亲,设置为p右儿子的父亲r.parent = p.parent;// 这说明p原来是root节点if (p.parent == null)root = r;else if (p.parent.left == p)p.parent.left = r;elsep.parent.right = r;r.left = p;p.parent = r;}
}//和左旋类似
private void rotateRight(Entry<K,V> p) {// ...
}
下面我们通过图解来看看如何插入一颗红黑树。
现有数组int[] a = {1, 10, 9, 2, 3, 8, 7, 4, 5, 6};我们要将其变为一棵红黑树。
首先插入1,此时树是空的,1就是根结点,根结点是黑色的:
然后插入元素10,此时依然符合规则,结果如下:
当插入元素9时,这时是需要调整的第一种情况,结果如下:
红黑树规则4中强调不能有两个相邻的红色结点,所以此时我们需要对其进行调整。调整的原则有多个相关因素,这里的情况是,父结点10是其祖父结点1(父结点的父结点)的右孩子,当前结点9是其父结点10的左孩子,且没有叔叔结点(父结点的兄弟结点),此时需要进行两次旋转,第一次,以父结点10右旋:
然后将父结点(此时是9)染为黑色,祖父结点1染为红色,如下所示:
然后以祖父结点1左旋:
下一步,插入元素2,结果如下:
此时情况与上一步类似,区别在于父结点1是祖父结点9的左孩子,当前结点2是父结点的右孩子,且叔叔结点10是红色的。这时需要先将叔叔结点10染为黑色,再进行下一步操作,具体做法是将父结点1和叔叔结点10染为黑色,祖父结点9染为红色,如下所示:
由于结点9是根节点,必须为黑色,将它染为黑色即可:
下一步,插入元素3,如下所示:
这和我们之前插入元素10的情况一模一样,需要将父结点2染为黑色,祖父结点1染为红色,如下所示:
然后左旋:
下一步,插入元素8,结果如下:
此时和插入元素2有些类似,区别在于父结点3是右孩子,当前结点8也是右孩子,这时也需要先将叔叔结点1染为黑色,具体操作是先将1和3染为黑色,再将祖父结点2染为红色,如下所示:
此时树已经平衡了,不需要再进行其他操作了,现在插入元素7,如下所示:
这时和之前插入元素9时一模一样了,先将7和8右旋,如下所示:
然后将7染为黑色,3染为红色,再进行左旋,结果如下:
下一步要插入的元素是4,结果如下:
这里和插入元素2是类似的,先将3和8染为黑色,7染为红色,如下所示:
但此时2和7相邻且颜色均为红色,我们需要对它们继续进行调整。这时情况变为了父结点2为红色,叔叔结点10为黑色,且2为左孩子,7为右孩子,这时需要以2左旋。这时左旋与之前不同的地方在于结点7旋转完成后将有三个孩子,结果类似于下图:
这种情况处理起来也很简单,只需要把7原来的左孩子3,变成2的右孩子即可,结果如下:
然后再把2的父结点7染为黑色,祖父结点9染为红色。结果如下所示:
此时又需要右旋了,我们要以9右旋,右旋完成后7又有三个孩子,这种情况和上述是对称的,我们把7原有的右孩子8,变成9的左孩子即可,如下所示:
下一个要插入的元素是5,插入后如下所示:
有了上述一些操作,处理5变得十分简单,将3染为红色,4染为黑色,然后左旋,结果如下所示:
最后插入元素6,如下所示:
又是叔叔结点3为红色的情况,这种情况我们处理过多次了,首先将3和5染为黑色,4染为红色,结果如下:
此时问题向上传递到了元素4,我们看2、4、7、9的颜色和位置关系,这种情况我们也处理过,先将2和9染为黑色,7染为红色,结果如下:
最后7是根结点,染为黑色即可,最终结果如下所示:
可以看到,在插入元素时,叔叔结点是主要影响因素,待插入结点与父结点的关系决定了是否需要多次旋转。
删除
除了添加操作,红黑树的删除也是很麻烦的…我们看看怎么通过java去实现红黑树的删除。具体代码如下:
public V remove(Object key) {TreeMapEntry<K,V> p = getEntry(key);if (p == null)return null;V oldValue = p.value;deleteEntry(p);return oldValue;}
其内部是通过deleteEntry去进行删除的。所以我们具体看看deleteEntry的实现。
private void deleteEntry(TreeMapEntry<K,V> p) {modCount++;size--;if (p.left != null && p.right != null) {TreeMapEntry<K,V> s = successor(p);p.key = s.key;p.value = s.value;p = s;} TreeMapEntry<K,V> replacement = (p.left != null ? p.left : p.right);if (replacement != null) {// Link replacement to parentreplacement.parent = p.parent;if (p.parent == null)root = replacement;else if (p == p.parent.left)p.parent.left = replacement;elsep.parent.right = replacement;p.left = p.right = p.parent = null;// Fix replacementif (p.color == BLACK)fixAfterDeletion(replacement);} else if (p.parent == null) { root = null;} else {if (p.color == BLACK)fixAfterDeletion(p);if (p.parent != null) {if (p == p.parent.left)p.parent.left = null;else if (p == p.parent.right)p.parent.right = null;p.parent = null;}}}
根据上述代码,我们可以看出,如果 p 有两个孩子节点,则找到后继节点,并把后继节点的值复制到节点 P 中,并让 p 指向其后继节点。 然后将 replacement parent 引用指向新的父节点,同时让新的父节点指向 replacement。
然后判断如果删除的节点 p 是黑色节点,则需要进行调整。删除的是根结点并且树中只有一个节点,我们将根结点置为null,否则,如果删除的节点没有子节点并且是黑色,则需要调整。最后将p从树中移除。
删除了一个元素,为了保证还是一个红黑树,我们需要将其进行调整,具体代码如下:
/** From CLR */private void fixAfterDeletion(TreeMapEntry<K,V> x) {while (x != root && colorOf(x) == BLACK) {if (x == leftOf(parentOf(x))) {TreeMapEntry<K,V> sib = rightOf(parentOf(x));if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateLeft(parentOf(x));sib = rightOf(parentOf(x));}if (colorOf(leftOf(sib)) == BLACK &&colorOf(rightOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(rightOf(sib)) == BLACK) {setColor(leftOf(sib), BLACK);setColor(sib, RED);rotateRight(sib);sib = rightOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(rightOf(sib), BLACK);rotateLeft(parentOf(x));x = root;}} else { // symmetricTreeMapEntry<K,V> sib = leftOf(parentOf(x));if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateRight(parentOf(x));sib = leftOf(parentOf(x));}if (colorOf(rightOf(sib)) == BLACK &&colorOf(leftOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(leftOf(sib)) == BLACK) {setColor(rightOf(sib), BLACK);setColor(sib, RED);rotateLeft(sib);sib = leftOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(leftOf(sib), BLACK);rotateRight(parentOf(x));x = root;}}}setColor(x, BLACK);
}
如果替换节点是父节点的左节点,并且替换节点的兄弟节点是红色,那我们需要将兄弟节点变成黑色,将父节点变成红色,并且通过父节点进行左旋转,然后将父节点的右节点设为兄弟节点。
如果兄弟节点的左右节点都是黑色的,那么将兄弟节点置为红色,并且将当前节点指向父节点。若兄弟节点的右节点是黑色,我们需要将兄弟节点的左节点设为黑色,将兄弟节点设为红色,然后以兄弟节点进行右旋转,然后更新兄弟节点。然后设置兄弟节点的颜色为右节点的颜色,然后将父节点和兄弟节点的左节点设为黑色,最后进行右旋转。最后将根结点设为黑色。
下面我们依旧通过图解来看看红黑树的删除操作:要从一棵红黑树中删除一个元素,主要分为三种情况。
待删除元素没有孩子
没有孩子指的是没有值不为NIL的孩子。这种情况下,如果删除的元素是红色的,可以直接删除,如果删除的元素是黑色的,就需要进行调整了。
例如我们从下图中删除元素1:
删除元素1后,2的左孩子为NIL,这条支路上的黑色结点数就比其他支路少了,所以需要进行调整。
这时,我们的关注点从叔叔结点转到兄弟结点,也就是结点4,此时4是红色的,就把它染为黑色,把父结点2染为红色,如下所示:
然后以2左旋,结果如下:
此时兄弟结点为3,且它没有红色的孩子,这时只需要把它染为红色,父结点2染为黑色即可。结果如下所示:
待删除元素有一个孩子
这应该是删除操作中最简单的一种情况了,根据红黑树的定义,我们可以推测,如果一个元素仅有一个孩子,那么这个元素一定是黑色的,而且其孩子是红色的。
假设我们有一个红色节点,它是树中的某一个节点,且仅有一个孩子,那么根据红色节点不能相邻的条件,它的孩子一定是黑色的,如下所示:
但这个子树的黑高却不再平衡了(注意每个节点的叶节点都是一个NIL节点),因此红色节点不可能只有一个孩子。
而若是一个黑色节点仅有一个孩子,如果其孩子是黑色的,同样会打破黑高的平衡,所以其孩子只能是红色的,如下所示:
只有这一种情况符合红黑树的定义,这时要删除这个元素,只需要使用其孩子代替它,仅代替值而不代替颜色即可,上图的情况删除完后变为:
可以看到,树的黑高并没有发生变化,因此也不需要进行调整。
待删除元素有两个孩子
我们知道如果删除一个有两个孩子的元素,可以使用它的前驱或者后继结点代替它。因为它的前驱或者后继结点最多只会有一个孩子,所以这种情况可以转为上述两种情况进行处理。
查找
说了最复杂的添加和删除,我们再来看看查找,这里就简单很多了,具体代码如下:
public V get(Object key) {Entry<K,V> p = getEntry(key);return (p==null ? null : p.value);
}final Entry<K,V> getEntry(Object key) {// Offload comparator-based version for sake of performanceif (comparator != null)return getEntryUsingComparator(key);if (key == null)throw new NullPointerException();@SuppressWarnings("unchecked")Comparable<? super K> k = (Comparable<? super K>) key;Entry<K,V> p = root;// 查找操作的核心逻辑就在这个 while 循环里while (p != null) {int cmp = k.compareTo(p.key);if (cmp < 0)p = p.left;else if (cmp > 0)p = p.right;elsereturn p;}return null;
}
这个流程算比较简单了,上面注释标明了,这边就不再解释了。
总结
这边通过图+代码的形式将红黑树的特点展现出来。可以通过上面描述可见,红黑树并没有那么难…
参考
Java集合源码分析之基础(六):红黑树(RB Tree)