R 四姑娘山每日客流量爬虫 时间序列建模 ARIMA 指数平滑 TBATS拟合与预测

news/2025/1/16 0:01:03/

 

一、数据来源

数据来自四姑娘山景区首页新闻的每日客流量发布处,利用python爬虫读取2015年9月29号到2020年6月8日的每日客流量和对应的日期。

import urllib.request
from bs4 import BeautifulSoup
response = urllib.request.urlopen('https://www.sgns.cn/news/number')   
soup = BeautifulSoup(response,'html.parser')
numbers0 = soup.find_all(attrs={'headers' : 'categorylist_header_title'})
times0 = soup.find_all(attrs={'headers' : 'categorylist_header_date'})
numbers1=[]
times1=[]
for i in numbers0:n=str(i.text)[21:-10]numbers1.append(n)
for i in times0:t=str(i.text)[8:-6]times1.append(t)page=166for i in range(1,page-1):response = urllib.request.urlopen('https://www.sgns.cn/news/number?start='+str(10*i))soup = BeautifulSoup(response,'html.parser')numbers0 = soup.find_all(attrs={'headers' : 'categorylist_header_title'})times0 = soup.find_all(attrs={'headers' : 'categorylist_header_date'})for i in numbers0:n=str(i.text)numbers1.append(n)for i in times0:t=str(i.text)times1.append(t)
n = len(numbers1)
with open('sgns.txt','w') as f:     for i in range(n):f.write(numbers1[i]+','+times1[i]+'\n')

接下来分析用R语言

 

 

 

library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
library(ggplot2)
data0 = read.csv(file = "C:/Users/91333/Documents/semester6/VS code/VScode Python/dgns1.txt",header = FALSE,sep = ",")#接下来进行数据清洗,把数据整理成可用形态
data <- data0[1:10,]
data0<-data0[11:nrow(data0),]
for(i in 1:1640){data[10+i,1]<-data0[(i-1)*3+1,1]data[10+i,2]<-data0[(i-1)*3+3,1]}
data$V1 <- as.numeric(apply(as.data.frame(data$V1), MARGIN = 1,FUN = function(x) {gsub("[^[:digit:]]", "", x)})) # 删掉str中的非数字成分
data$V2 <- ymd(data$V2)
data <- na.omit(data)
colnames(data)<-c("游客数","日期")

二、初步探索与数据准备

(一)、缺失值补齐

检查数据时发现数据偶有缺失,1722条观测中共有73个缺失值,为了时间序列预测的完整性,我们直接对73个缺失值进行均值填补。

data1 <- merge(data,data.frame(日期 = seq.Date(from = as.Date("2015/09/29",format = "%Y/%m/%d"),to = as.Date("2020/06/08",format = "%Y/%m/%d"), by = "day")),all.y=T)
sum(is.na(data1$游客数))
## [1] 73
data1[is.na(data1$游客数),2] <- mean(data$游客数,na.omit=T)

(二)、绘图与平稳性检验

ggplot(data)+geom_line(aes(x=日期,y=游客数))

 由上图,我们大致可以看出序列平稳,是否真的平稳需要进一步的检验。

下面我们正式进入建模,进行ADF检验,在此之前,我们先删去了2020年之后的数据,从上图也可以看出,疫情对四姑娘山客流量产生了极大的影响,属于非正常情况。

library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
adf.test(data1$游客数)
## Warning in adf.test(data1$游客数): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data1$游客数
## Dickey-Fuller = -6.3952, Lag order = 11, p-value = 0.01
## alternative hypothesis: stationary

p<0.01,则接受备择假设序列平稳,可以进行时间序列建模。 ### 三、拟合ARIMA模型 #### (一)、定阶与拟合

我们考虑带有周期性和均值项的ARIMA模型,由于数据为从2015年9月到2019年12月,当考虑周期性,我们可以考虑以7天一周为周期,也可以考虑30天一个月为周期,还可以考虑365天为周期,所以我们都尝试了一遍,并且使用AICc作为最优模型的判断标准。

library(forecast)
data7 <- ts(data1$游客数, frequency = 7)
data30 <- ts(data1$游客数, frequency = 30)
data365 <- ts(data1$游客数, frequency = 365)
fitarima1 <- auto.arima(data7,seasonal = T)
fitarima1#ARMA(1,3)
## Series: data7 
## ARIMA(2,1,2)(2,0,0)[7] 
## 
## Coefficients:
##          ar1      ar2      ma1      ma2    sar1    sar2
##       0.8887  -0.1732  -0.7455  -0.2299  0.1897  0.1129
## s.e.  0.0726   0.0650   0.0728   0.0731  0.0253  0.0247
## 
## sigma^2 estimated as 722940:  log likelihood=-14048.91
## AIC=28111.82   AICc=28111.88   BIC=28149.97
fitarima2 <- auto.arima(data30,seasonal = T)
fitarima2#ARMA(1,3)
## Series: data30 
## ARIMA(1,1,3) 
## 
## Coefficients:
##          ar1      ma1      ma2      ma3
##       0.6213  -0.4937  -0.3762  -0.0584
## s.e.  0.0470   0.0519   0.0253   0.0364
## 
## sigma^2 estimated as 760396:  log likelihood=-14093.05
## AIC=28196.1   AICc=28196.13   BIC=28223.35
fitarima3 <- auto.arima(data365,seasonal = T)
fitarima3#ARMA(1,3)
## Series: data365 
## ARIMA(0,1,3)(0,1,0)[365] 
## 
## Coefficients:
##           ma1      ma2      ma3
##       -0.1455  -0.4752  -0.2612
## s.e.   0.0266   0.0248   0.0317
## 
## sigma^2 estimated as 1146789:  log likelihood=-11386.54
## AIC=22781.09   AICc=22781.11   BIC=22801.93

(二)、白噪声检验

Box.test(fitarima1$residuals,lag=10,type='Ljung')
## 
##  Box-Ljung test
## 
## data:  fitarima1$residuals
## X-squared = 16.004, df = 10, p-value = 0.09951
Box.test(fitarima2$residuals,lag=10,type='Ljung')
## 
##  Box-Ljung test
## 
## data:  fitarima2$residuals
## X-squared = 82.697, df = 10, p-value = 1.483e-13
Box.test(fitarima3$residuals,lag=10,type='Ljung')
## 
##  Box-Ljung test
## 
## data:  fitarima3$residuals
## X-squared = 56.383, df = 10, p-value = 1.74e-08

如果p<0.05,认为不是白噪声

(三)预测绘图

ggdata <- rbind(data[100:1649,],data.frame(日期=seq.Date(from = as.Date("2020/01/01",format = "%Y/%m/%d"), by = "day", length.out = 400),游客数=rep(NA,400)))
ggdata <- ggdata[order(ggdata[,2]),]
forecast_arima1 <- forecast(fitarima1, h = 50)
ggplot() + geom_line(aes(y = ggdata[1500:1600,1], x = ggdata[1500:1600,2]), size = 0.1) +  geom_line(aes(y = forecast_arima1$mean, x = ggdata[1551 : 1600, 2]), col = "red", size = 0.1) + xlab("日期") + ylab("游客数") + ggtitle("ARIMA(2,1,2)(2,0,0)[7]的向后50天预测")
## Warning: Removed 50 row(s) containing missing values (geom_path).

forecast_arima2 <- forecast(fitarima2, h = 50)
ggplot() + geom_line(aes(y = ggdata[1500:1600,1], x = ggdata[1500:1600,2]), size = 0.1) +  geom_line(aes(y = forecast_arima2$mean, x = ggdata[1551 : 1600, 2]), col = "red", size = 0.1) + xlab("日期") + ylab("游客数")+ggtitle("ARIMA(1,1,3)的向后50天预测")
## Warning: Removed 50 row(s) containing missing values (geom_path).

forecast_arima3 <- forecast(fitarima3, h = 400)
ggplot() + geom_point(aes(y = ggdata$游客数, x = ggdata$日期), size = 0.1) +  geom_point(aes(y = forecast_arima3$mean, x = ggdata[1551 : 1950, 2]), col = "red", size = 0.1) + xlab("日期") + ylab("游客数")+ggtitle('ARIMA(0,1,3)(0,1,0)[365]的向后400天预测')
## Warning: Removed 400 rows containing missing values (geom_point).

四、指数平滑拟合

指数平滑也是时间序列建模的一种方法,同ARIMA拟合一样,也同时考虑以7天为周期、30天为周期和以365天为周期。

(一)拟合效果

1.整体观察

fithot1<-HoltWinters(data7, beta = F) 
par(mfrow=c(1,1))
plot(fithot1)

fithot2<-HoltWinters(data30, beta = F) 
par(mfrow=c(1,1))
plot(fithot2)

fithot3<-HoltWinters(data365, beta = F) 
par(mfrow=c(1,1))
plot(fithot3)

 ##### 2.局部观察:以周期为365的指数平滑拟合为例

其实从上面的整体观察也可以看出,只有第一幅图中,以7天为周期拟合时,存在拟合数据头部波动太大的问题,其他两幅拟合图情况都表现良好,所以在这里用365天周期为例子。

fithot3_plot <- data.frame(游客数=c(data1$游客数[1031:1100],fithot3$fitted[1031:1100]),difference=rep(c("actual","fitted"),c(70:70)),日期=c(data1$日期[1031:1100],data1$日期[1031:1100]))
ggplot(fithot3_plot)+geom_line(aes(y=游客数,x=日期,group=difference,linetype=difference,color=difference))+labs(title  = "四姑娘山游客数指数平滑拟合",subtitle="seasonal = 365") +xlab(label = "日期") + ylab(label = "游客数")+theme(plot.title  = element_text(hjust = 0.5))

(二)、预测效果

forecast_fithot1<-forecast(fithot1,h=50)
ggplot() + geom_line(aes(y = ggdata[1500:1600,1], x = ggdata[1500:1600,2]), size = 0.1) +  geom_line(aes(y = forecast_fithot1$mean, x = ggdata[1551 : 1600, 2]), col = "red", size = 0.1)+labs(title  = "指数平滑模型的向后50天预测",subtitle="周期:7") +xlab(label = "日期") + ylab(label = "游客数")+theme(plot.title  = element_text(hjust = 0.5))
## Warning: Removed 50 row(s) containing missing values (geom_path).

forecast_fithot2<-forecast(fithot2,h=100)
ggplot() + geom_line(aes(y = ggdata[1470:1650,1], x = ggdata[1470:1650,2]), size = 0.1) +  geom_line(aes(y = forecast_fithot2$mean, x = ggdata[1551 : 1650, 2]), col = "red", size = 0.1) +labs(title  = "指数平滑模型的向后100天预测",subtitle="周期:30") +xlab(label = "日期") + ylab(label = "游客数")+theme(plot.title  = element_text(hjust = 0.5))
## Warning: Removed 100 row(s) containing missing values (geom_path).

forecast_fithot3 <- forecast(fithot3, h = 400)
ggplot() + geom_point(aes(y = ggdata$游客数, x = ggdata$日期), size = 0.1) +  geom_point(aes(y = forecast_fithot3$mean, x = ggdata[1551 : 1950, 2]), col = "red", size = 0.1) +labs(title  = "指数平滑模型的向后400天预测",subtitle="周期:365") +xlab(label = "日期") + ylab(label = "游客数")+theme(plot.title  = element_text(hjust = 0.5))
## Warning: Removed 400 rows containing missing values (geom_point).

指数平滑模型的预测效果要比ARIMA模型好的多。

(三)、指数平滑法改进的尝试

事实上,四姑娘山的客流量变化的季节性,有两个方面。首先,在一周内具有“季节性变化”,周末的客流量要比工作日高很多;其次,一年内也有明显的季节性变化,浏览四姑娘山有旺季也有淡季,因此,我们还可以同时考虑这两个季节性,尝试多季节性时间序列建模。

1.TBATS模型

TBATS 模型(Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components) 是由De Livera、Hyndman和Snyder(2011)开发的另一种方法使用傅立叶项与指数平滑状态空间模型和Box-Cox变换的组合,完全自动化,在R语言中有现成的包。

data7365 <- msts(data1$游客数,seasonal.periods = c(7,365))
fittbats <- tbats(data7365)
fittbats
## TBATS(0.103, {2,2}, -, {<7,2>, <365,5>})
## 
## Call: tbats(y = data7365)
## 
## Parameters
##   Lambda: 0.102628
##   Alpha: 0.0107387
##   Gamma-1 Values: 0.001370681 -0.001136551
##   Gamma-2 Values: -0.001174851 -0.0004119755
##   AR coefficients: 1.498767 -0.52432
##   MA coefficients: -0.737299 -0.105838
## 
## Seed States:
##              [,1]
##  [1,]  8.56324258
##  [2,] -0.21587970
##  [3,]  0.01142647
##  [4,] -0.38826913
##  [5,]  0.22332276
##  [6,]  1.43166137
##  [7,]  0.91840331
##  [8,]  0.03670414
##  [9,] -0.32329308
## [10,] -0.05760824
## [11,] -1.45944304
## [12,]  0.28193903
## [13,]  0.49921333
## [14,]  0.65055250
## [15,]  0.53529261
## [16,]  0.00000000
## [17,]  0.00000000
## [18,]  0.00000000
## [19,]  0.00000000
## attr(,"lambda")
## [1] 0.1026285
## 
## Sigma: 0.9710305
## AIC: 32844.44
forecast_tbats <- forecast(fittbats, h = 400)
ggplot() + geom_point(aes(y = ggdata$游客数, x = ggdata$日期), size = 0.1) +  geom_point(aes(y = forecast_tbats$mean, x = ggdata[1551 : 1950, 2]), col = "red", size = 0.1) + xlab("日期") + ylab("游客数")+ggtitle('TBATS的向后400天预测')
## Warning: Removed 400 rows containing missing values (geom_point).

从图中可以看出,相比只考虑周期365的指数平滑模型,TBATS的估计更为保守和折中,但没有显示出对只考虑周期365的指数平滑模型的改进。

五、总结

根据预测效果我们最终选择周期为365的指数平滑模型作为最终的预测模型。 一下为其估计出的参数

fithot3$coefficients
##             a            s1            s2            s3            s4 
##  1209.8851284   -50.4150837   -84.3434729  -671.7830592  -590.3388754 
##            s5            s6            s7            s8            s9 
##  -408.2040871  -364.5343108  -437.9689257  -269.7730554  -409.6871415 
##           s10           s11           s12           s13           s14 
##  -592.8877642  -524.3309210  -515.3653688  -416.4906935  -523.3894594 
##           s15           s16           s17           s18           s19 
##  -367.7078204  -242.2049726  -473.8056172  -333.2752113  -429.6396850 
##           s20           s21           s22           s23           s24 
##  -236.1591365  -316.6312727  -379.7594429  -113.9704958  -615.7839551 
##           s25           s26           s27           s28           s29 
##  -161.4264737  -276.9469075   -25.9339286  -385.5415291  -320.7143098 
##           s30           s31           s32           s33           s34 
##   -93.1407335  -147.3379641  -141.6788048   -59.7540439   123.5069157 
##           s35           s36           s37           s38           s39 
##   226.7596388   128.9651490    74.9807465   -33.3800978    31.2402231 
##           s40           s41           s42           s43           s44 
##    50.5307364   249.2589075  -101.7379835   530.1637238   156.9130994 
##           s45           s46           s47           s48           s49 
##   117.8400352   325.7256170   311.7154213   653.8303905  1087.8359727 
##           s50           s51           s52           s53           s54 
##   995.6859103   751.0290436   153.1190280   429.9669959   458.5215332 
##           s55           s56           s57           s58           s59 
##   474.8859940   695.3700504   997.0413083   519.6134121    -9.1122513 
##           s60           s61           s62           s63           s64 
##   296.6552182   418.5837378   746.8574473   989.2619534  1043.1781565 
##           s65           s66           s67           s68           s69 
##   507.5197316   530.0733479   555.6238675   460.9317597   583.7106494 
##           s70           s71           s72           s73           s74 
##   385.3482394   538.5297681   390.2863420   214.8751608  -321.2621966 
##           s75           s76           s77           s78           s79 
##  -440.3923662  -541.0744158  -499.2890962  -119.9392787  -196.8503142 
##           s80           s81           s82           s83           s84 
##  -444.2498386  -433.6367035  -513.4281219  -405.5792610  -259.4161527 
##           s85           s86           s87           s88           s89 
##   104.0283011   170.6465397  -161.3859810  -245.8992175  -192.4138175 
##           s90           s91           s92           s93           s94 
##  -196.5888376   -13.4392490  2489.9996114  1331.9699186   273.5968956 
##           s95           s96           s97           s98           s99 
##     2.0886303   -88.8094847   -91.5522247   -37.2001898   670.8981604 
##          s100          s101          s102          s103          s104 
##   659.6314026  -280.3228799  -190.2025039    -7.5667220     4.1628672 
##          s105          s106          s107          s108          s109 
##   118.8317579   367.8586004  2362.7539796  7040.3047868 10363.2547165 
##          s110          s111          s112          s113          s114 
## 10597.5528745  8508.4921314  4869.0815724   671.6288507  -767.5710608 
##          s115          s116          s117          s118          s119 
##  -108.8627600   564.8356554   982.7958280  1470.8019593  1736.3733053 
##          s120          s121          s122          s123          s124 
##  2315.1064850  3120.1798063  2583.3951432  2686.9125707  2654.4253383 
##          s125          s126          s127          s128          s129 
##  2550.2141189  2543.7709802  3346.6813248  5083.3120035  4187.5969715 
##          s130          s131          s132          s133          s134 
##  3083.7461780  2655.0868995  3124.3195698  2794.7226404  2981.8802564 
##          s135          s136          s137          s138          s139 
##  3668.7789673  3144.4161984  1721.9915919  1188.3175341  1059.6519398 
##          s140          s141          s142          s143          s144 
##  1168.6670227  2252.9212306  3998.0961579  2526.4828850   801.4481899 
##          s145          s146          s147          s148          s149 
##   214.7644404    47.5183886   153.0764486   676.4372308  1109.4849259 
##          s150          s151          s152          s153          s154 
##   548.2605204    44.1542375  -239.2333609  -383.1907927  -347.1596869 
##          s155          s156          s157          s158          s159 
##    31.0220249   304.4568409   -19.2564461  -483.2990303  -278.2134978 
##          s160          s161          s162          s163          s164 
##  -830.4053170  -718.0297268  -413.7738312  -208.0903835  -664.3410978 
##          s165          s166          s167          s168          s169 
##  -857.7736155  -805.2558593  -843.9487166  -838.9610718  -680.5885578 
##          s170          s171          s172          s173          s174 
##  -394.4042548  -497.3195446  -903.3239042  -943.0095755  -896.0479458 
##          s175          s176          s177          s178          s179 
##  -905.4579324  -733.3674327  -586.1165980  -677.3107671 -1016.9633353 
##          s180          s181          s182          s183          s184 
##  -962.4933534  -893.5744835  -880.8306153  -907.5817265  -646.6494861 
##          s185          s186          s187          s188          s189 
##  -705.5741916 -1015.6163422  -907.8912286  -956.3901090  -937.2663694 
##          s190          s191          s192          s193          s194 
##  -732.5065180  -930.7902854  -860.3632375  -973.2386728 -1000.2721730 
##          s195          s196          s197          s198          s199 
##  -898.2964326  -939.1227316  -846.9900499   214.4981847   664.5460716 
##          s200          s201          s202          s203          s204 
##  -246.3961442  -712.7869967  -924.0647139  -924.2542552  -951.0099368 
##          s205          s206          s207          s208          s209 
##  -795.1967314  -891.0925587 -1027.2436036 -1007.7671292  -988.8411683 
##          s210          s211          s212          s213          s214 
##  -996.6426663  -959.0102600  -864.1382403  -881.1752496  -983.9105447 
##          s215          s216          s217          s218          s219 
## -1006.9784739  -970.5221487 -1088.2178946  -906.6899943  -993.6454722 
##          s220          s221          s222          s223          s224 
##  -964.4285380  -982.5571898 -1016.2883339 -1045.5866390 -1056.0586777 
##          s225          s226          s227          s228          s229 
## -1048.8846934  -855.3155744   154.8430065  1344.7473191  2119.4703471 
##          s230          s231          s232          s233          s234 
##  1614.1095889   928.7062342   242.1628872  -371.6839058  -666.2285936 
##          s235          s236          s237          s238          s239 
##  -721.4206881  -634.4595882  -798.0644789 -1032.5367307 -1280.3381997 
##          s240          s241          s242          s243          s244 
## -1262.8268356 -1193.0706275 -1272.8411310 -1320.6840779 -1285.1855061 
##          s245          s246          s247          s248          s249 
## -1235.6934907 -1050.8392780 -1000.7488775 -1030.6851946 -1294.0403103 
##          s250          s251          s252          s253          s254 
## -1341.2816341 -1272.6799137 -1315.5267294 -1370.0354487 -1291.5867959 
##          s255          s256          s257          s258          s259 
## -1227.2620868 -1280.5050484 -1293.6726006 -1308.2073016 -1311.0584262 
##          s260          s261          s262          s263          s264 
## -1208.1308043  -995.5378649 -1082.6423367 -1247.4852318 -1243.4184035 
##          s265          s266          s267          s268          s269 
##   -52.7375454  -543.2101986  -912.4392657  -899.2148031  -899.1757710 
##          s270          s271          s272          s273          s274 
## -1185.6429558 -1211.3595638 -1203.6636662 -1146.5637730 -1096.8201825 
##          s275          s276          s277          s278          s279 
##  -687.8352847  -619.1653264  -835.3783922  -959.6180174  -935.6950056 
##          s280          s281          s282          s283          s284 
##  -892.0725243  -843.1881163  -552.5635952  -537.9623281  -709.0866895 
##          s285          s286          s287          s288          s289 
##  -843.5568153  -876.6116634  -481.6038990  -351.3177010  -281.3309977 
##          s290          s291          s292          s293          s294 
##  -204.8171513  1048.5381738    44.9898119   380.6568470  -273.2726212 
##          s295          s296          s297          s298          s299 
##  -635.9238650  -394.0600088  -239.0114485  -523.6490313  -372.9122763 
##          s300          s301          s302          s303          s304 
##  -276.4677349   -43.8006526  -171.6756478  -294.6628938  -391.0980635 
##          s305          s306          s307          s308          s309 
##  -440.2622049  -248.5693857  -317.3721323  -324.2112467  -243.5059803 
##          s310          s311          s312          s313          s314 
##   -26.5467049  -330.7010596  -443.0281077  -499.2887064  -374.5983875 
##          s315          s316          s317          s318          s319 
##  -367.1066497  -289.0542814   705.2346729   574.9174293   927.7046672 
##          s320          s321          s322          s323          s324 
##   971.8044924  -565.4492201 -1284.6519290  -848.5833652  -395.2998677 
##          s325          s326          s327          s328          s329 
##  -387.2330364   -56.3958980  -206.6351379  -396.2946054  -271.0539436 
##          s330          s331          s332          s333          s334 
##  -765.7887967  -631.8094450  -433.0553472  -504.4797061  -470.6858409 
##          s335          s336          s337          s338          s339 
##  -381.2781937  -354.0468112   -30.5796797  -246.6573937  -348.2941724 
##          s340          s341          s342          s343          s344 
##  -523.2659707  -407.6650977  -319.0171870  -350.1990511     0.7611104 
##          s345          s346          s347          s348          s349 
##  -430.1052047  -146.6708942  -213.3778014  -610.3461904  -535.1584913 
##          s350          s351          s352          s353          s354 
##  -494.7072286  -508.0804042  -432.2283021  -355.3212032  -325.1013548 
##          s355          s356          s357          s358          s359 
##  -218.4327787    65.9865537     0.2003378  -695.4455823   361.3555908 
##          s360          s361          s362          s363          s364 
##   356.8847066  -356.5012459  -312.8628552  -327.1284213  -453.9605642 
##          s365 
##  -503.8851284

 

 


http://www.ppmy.cn/news/621639.html

相关文章

Kubernetes中的亲和性与反亲和性

Kubernetes中的亲和性与反亲和性 文章目录 Kubernetes中的亲和性与反亲和性nodeSelector亲和与反亲和 Affinity and anti-affinity节点亲和性 Node affinityPod间的亲和性与反亲和性 inter-pod affinity/anti-affinity 常用场景 Kubernetes中的亲和性实践实践Pod调动到某些节点…

K8s<五>

七、Kubernetes Pod 资源 1、Pod 服务状态 1、无状态服务 是指该服务运行的实例不会在本地存储需要持久化的数据&#xff0c;并且多个实例对于同一个请求响应的结果是完全一致的。 多个实例可以共享相同的持久化数据。例如&#xff1a;nginx 实例&#xff0c;tomcat 实例等 …

Kubernetes中的亲和性和反亲和性(决定创建副本的节点分布方式)

文章目录 Kubernetes中的亲和性实践Pod调动到某些节点上Pod间的亲和性和反亲和性 常用的场景Deployment的三副本分别部署在不同的host的node上 在一些应用中&#xff0c;pod副本之间需要共享cache,需要将pod运行在一个节点之上 Kubernetes中的亲和性 现实中应用的运行对于kube…

python构建知识图谱_一种构建知识图谱的方法及系统与流程

本发明涉及计算机领域&#xff0c;具体涉及一种构建知识图谱的方法及系统。 背景技术&#xff1a; 随着人工智能技术的不断发展&#xff0c;智能机器人被越来越多的应用于人类的生产生活当中。 在智能机器人与人类的交互过程中&#xff0c;为了提高智能机器人对用户需求回应…

分布式mysql扩容_一种分布式数据库的扩容方法及装置与流程

本发明属于分布式数据库领域&#xff0c;尤其是涉及一种分布式数据库的扩容方法及装置。 背景技术&#xff1a; &#xff1a;分布式数据库系统通常使用较小的计算机系统&#xff0c;每台计算机可单独放在一个地方&#xff0c;每台计算机中都可能有DBMS的一份完整拷贝副本&#…

matlab运用函数随机点名,matlab随机点名程序

思路: 总共n个学生(对应学号从1到n);每次抽查m个学生的作业; 输入n和m。得到每次抽查的学号; 而每次抽查的学号分为两部分:一部分是上次抽查过的人中随机30%的学号;另一部分是为抽查过的人中70%的学号; 最后,将每次抽查的人数在matlab界面显示,同时分别输出到D盘下的不…

Stable Diffusion 无损放大图像和缩小图像

Stable Diffusion默认生成的图片尺寸为512512&#xff0c;这种尺寸的分辨率可能无法满足高质量的要求。若想生成大图&#xff0c;存在两种可选的方法&#xff0c;在显卡足够支撑的情况下可以将图像当打到8K。 文章目录 hires.fix高分辨率修复extras附加功能放大功能缩放功能 hi…

Assigning Pods to Nodes(将Pod分配到Node)

您可以约束一个 pod &#xff0c;让其只能在特定 nodes 上运行&#xff0c;或者更倾向于在特定Node上运行。有几种方法能做到这点&#xff0c;他们都使用 label selectors 进行选择。通常这种约束不是必要的&#xff0c;因为Scheduler会自动执行合理的放置&#xff08;例如&…