常用的基本不等式:
sin x < x < t a n x , x ∈ ( 0 , π 2 ) \sin x<x<\ tan x,x\in(0,\frac{\pi}{2}) sinx<x< tanx,x∈(0,2π)
e x ≥ 1 + x , x ∈ ( − ∞ , + ∞ ) e^x\ge1+x,x\in(-\infty,+\infty) ex≥1+x,x∈(−∞,+∞)
x 1 + x ≤ ln ( 1 + x ) ≤ x , x ∈ ( 0 , + ∞ ) \frac{x}{1+x}\le \ln(1+x)\le x,x\in(0,+\infty) 1+xx≤ln(1+x)≤x,x∈(0,+∞)
本题中的积分区间为 ( 0 , π 4 ) , 有 tan x > x 本题中的积分区间为(0,\frac{\pi}{4}),有\tan x>x 本题中的积分区间为(0,4π),有tanx>x
故 ∫ 0 π 4 tan x x d x > ∫ 0 π 4 1 d x > ∫ 0 π 4 x tan x d x 故\int _{0}^{\frac{\pi}{4}}\frac{\tan x}{x}\,{\rm d}x>\int_{0}^{\frac{\pi}{4}}1\,{\rm d}x>\int_{0}^{\frac{\pi}{4}}\frac{x}{\tan x}\,{\rm d}x 故∫04πxtanxdx>∫04π1dx>∫04πtanxxdx
而 I 2 < ∫ 0 π 4 1 d x = π 4 < 1 而I_{2}<\int_{0}^{\frac{\pi}{4}}1\,{\rm d}x=\frac{\pi}{4}<1 而I2<∫04π1dx=4π<1
此时可以根据排除法选出选项 B 。 此时可以根据排除法选出选项B。 此时可以根据排除法选出选项B。
补充 x ∈ ( 0 , π 2 ) , sin x < x < tan x 的几何图形 补充x\in(0,\frac{\pi}{2}),\sin x<x<\tan x 的几何图形 补充x∈(0,2π),sinx<x<tanx的几何图形