https://blog.csdn.net/nockinonheavensdoor/article/details/82320580
先看看简单例子:
import torch
import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim torch.manual_seed(1)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 用
torch.tensor
让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],[[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
- 1
- 2
- 3
- 4
- 5
- 自动求导设
requires_grad=True
:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True) y = torch.tensor([4., 5., 6], requires_grad=True) z = x + y print(z) print(z.grad_fn) tensor([ 5., 7., 9.]) <AddBackward1 object at 0x00000247781E0BE0>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
detach()
方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn)None
- 1
- 2
- 3
- 4
- 好了,重点来了
Translation with a Sequence to Sequence Network and Attention
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata import string import re import random import torch import torch.nn as nn from torch import optim import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
准备数据:
SOS_token = 0
EOS_token = 1class lang: def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0:'SOS', 1:'EOS'} self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence): for word in sentence.split(): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase,trim,remove non-letter characters #re.sub(pattern, repl, string, count=0, flags=0) def normalizeString(s): s = unicodeToAscii(s.lower().strip()) # (re) 匹配括号内的表达式,也表示一个组 # [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k' # \1...\9 匹配第n个分组的内容。 s = re.sub(r"([.!?])", r"\1", s) # [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。 s = re.sub(r"[^a-zA-Z.!?]+",r" ", s) return s
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
继续:
# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False): print("Reading lines...") #Read the file and split into lines lines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make lang instances if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = lang(lang2) output_lang = lang(lang1) else: input_lang = lang(lang1) output_lang = lang(lang2) return input_lang, output_lang, pairs
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
过滤出部分样本:
MAX_LENGTH = 10eng_prefixes = ("i am ", "i m ","he is", "he s ", "she is", "she s", "you are", "you re ", "we are", "we re ", "they are", "they re " ) def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and \ len(p[1].split(' ')) < MAX_LENGTH and \ p[1].startswith(eng_prefixes) def filterPairs(pairs): return [ pair for pair in pairs if filterPair(pair)]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
-
The full process for preparing the data is:
- Read text file and split into lines, split lines into pairs
- Normalize text, filter by length and content
- Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)print("Read %s sentence pairs " % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs " % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) print("Counted word:") print(input_lang.name,input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng','fra',True) print(random.choice(pairs)) Reading lines... Read 135842 sentence pairs Trimmed to 11739 sentence pairs Counting words... Counted word: fra 5911 eng 3965 ['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
The Seq2Seq Model
- 允许句子到句子有不同长度和顺序。
The Encoder :
#编码器
class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size # 指定embedding矩阵W的大小维度 self.embedding = nn.Embedding(input_size, hidden_size) # 指定gru单元的大小 self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden): # 扁平化嵌入矩阵 embedded = self.embedding(input).view(1, 1, -1) print("embedded shape:",embedded.shape) output = embedded output, hidden = self.gru(output, hidden) return output, hidden #全0初始化隐层 def initHidden(self): # 这个初始化维度可以 return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
这里的self.gru = nn.GRU(hidden_size, hidden_size)
中,hidden_size在后面设置为256
print("embedded shape:",embedded.shape)
的结果是:
embedded shape: torch.Size([1, 1, 256])
所以self.gru(output, hidden)
中传递的第一个维度是[1,1,256],被压缩为这样的。
nn.GRU
源码:
The Decoder:
- seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
- context vector 作为decoder的初始化隐层状态值
class DecoderRNN(nn.Module):def self__init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size,hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): output = self.embedding(input).view(1, 1, -1) # 1行X列的shape做relu output = F.relu(output) output, hidden = self.gru(output, hidden) #output[0]应该是shape为(*,*)的矩阵 output = self.softmax(self.out(output[0])) return output, hidden def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Attention Decoder:
- 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
- encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
- 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)
class AttnDecoderRNN(nn.Module):def __init__(self, hidden_size, output_size, dropout_p = 0.1, max_length=MAX_LENGTH):super(AttnDecoderRNN,self).__init__()self.hidden_size = hidden_sizeself.output_size = output_sizeself.dropout_p = dropout_p self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size) self.attn = nn.Linear(self.hidden_size * 2, self.max_length) self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size) self.dropout = nn.Dropout(self.dropout_p) #输入向量的维度是10,隐层的长度是10,默认是一层GRU self.gru = nn.GRU(self.hidden_size, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs): embedded = self.embedding(input).view(1,1,-1) embedded = self.dropout(embedded) attn_weights = F.softmax( self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1) # unsqueeze:在指定的轴上多增加一个维度 attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0],attn_applied[0]),1) output = self.attn_combine(output).unsqueeze(0) output = F.relu(output) output, hidden = self.gru(output, hidden) #print("output shape:",output.shape) #print("output[0]:",output[0]) output = F.log_softmax(self.out(output[0]),dim=1) return output , hidden, attn_weights def initHidden(self): return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
继续准备数据:
def indexesFromSentence(lang, sentence):return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def tensorsFromPair(pair): input_tensor = tensorFromSentence(input_lang, pair[0]) target_tensor = tensorFromSentence(output_lang, pair[1]) return (input_tensor, target_tensor)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
训练模型
- 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
- “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): # 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小 encoder_hidden = encoder.initHidden() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() # 第一维度的大小即输入长度 input_length = input_tensor.size(0) output_length = output_tensor.size(0) encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device) loss = 0 for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden) # [0,0]选取最大数组的第一个元素组里的第一个 encoder_outputs[ei] = encoder_output[0 , 0] if ei == 0 : print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape) decoder_input = torch.tensor([[SOS_token]], device=device) decoder_hidden = encoder_output # niubi use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False if use_teacher_forcing: # Teacher forcing: Feed the target as the next input for di in range(output_length): decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) loss = loss + criterion(decoder_ouput, output_tensor[di]) decoder_input = output_tensor[di] # Teacher forcing else: for di in range(output_length): decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs) topv ,topi = decoder_output.topk(1) decoder_input= topi.squeeze().detach() # # detach from history as input loss = loss + criterion(decoder_output, output_tensor[di]) if decoder_input.item() == EOS_token: break loss.backward() encoder_optimizer.step() decoder_optimizer.step() return loss.item() / target_length
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
好了,模型准备结束:
import time
import mathdef asMinutes(s): m = math.floors(s / 60) s -= m * 60 return "%s(- %s)" % (asMinutes(s), asMinutes(rs)) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
训练过程:
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01): start = time.time() plot_losses = [] print_loss_total = 0 # Reset every print_every plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate) training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)] criterion = nn.NLLLoss() for iter in range(1, n_iters + 1): training_pair = training_pairs[iter - 1] input_tensor = training_pair[0] target_tensor = training_pair[1] loss = train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) print_loss_total = loss + print_loss_total plot_loss_total = loss + plot_loss_total if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 showPlot(plot_losses)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
画图的这段:
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker import numpy as np def showPlot(points): plt.figure() fig, ax = plt.subplots() # this locator puts ticks at regular intervals loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
验证的代码:
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):with torch.no_grad(): input_tensor = tensorFromSentence(input_lang, sentence) input_length = input_tensor.size()[0] encoder_hidden = encoder.initHidden() encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden) encoder_outputs[ei] += encoder_output[0, 0] decoder_input = torch.tensor([[SOS_token]], device=device) # SOS decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_attentions[di] = decoder_attention.data topv, topi = decoder_output.data.topk(1) if topi.item() == EOS_token: decoded_words.append('<EOS>') break else: decoded_words.append(output_lang.index2word[topi.item()]) decoder_input = topi.squeeze().detach() return decoded_words, decoder_attentions[:di + 1]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
def evaluateRandomly(encoder, decoder, n=10): for i in range(n): pair = random.choice(pairs) print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
最后一步:
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device) trainIters(encoder1, attn_decoder1, 75000, print_every=5000)
先看看简单例子:
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optimtorch.manual_seed(1)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 用
torch.tensor
让list成为tensor:
# Create a 3D tensor of size 2x2x2.
T_data = [[[1., 2.], [3., 4.]],[[5., 6.], [7., 8.]]]
T = torch.tensor(T_data)
print(T)
- 1
- 2
- 3
- 4
- 5
- 自动求导设
requires_grad=True
:
# Computation Graphs and Automatic Differentiation
x = torch.tensor([1., 2., 3], requires_grad=True)
y = torch.tensor([4., 5., 6], requires_grad=True)
z = x + y
print(z)
print(z.grad_fn)tensor([ 5., 7., 9.])
<AddBackward1 object at 0x00000247781E0BE0>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
detach()
方法获取z的值,但是不能对获取后的值求导了。
new_z = z.detach()
print(new_z.grad_fn)None
- 1
- 2
- 3
- 4
- 好了,重点来了
Translation with a Sequence to Sequence Network and Attention
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import randomimport torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as Fdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
准备数据:
SOS_token = 0
EOS_token = 1class lang:def __init__(self, name):self.name = nameself.word2index = {}self.word2count = {}self.index2word = {0:'SOS', 1:'EOS'}self.n_words = 2 # Count SOS and EOSdef addSentence(self, sentence):for word in sentence.split():self.addWord(word)def addWord(self, word):if word not in self.word2index:self.word2index[word] = self.n_wordsself.word2count[word] = 1self.index2word[self.n_words] = wordself.n_words += 1else:self.word2count[word] += 1
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- Unicode字符转为ASCII,用小写字母表示一切,去掉标点符号:
# Turn a Unicode string to plain ASCII, thanks to
# http://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):return ''.join(c for c in unicodedata.normalize('NFD', s)if unicodedata.category(c) != 'Mn')# Lowercase,trim,remove non-letter characters
#re.sub(pattern, repl, string, count=0, flags=0)
def normalizeString(s):s = unicodeToAscii(s.lower().strip())# (re) 匹配括号内的表达式,也表示一个组# [...] 用来表示一组字符,单独列出:[amk] 匹配 'a','m'或'k'# \1...\9 匹配第n个分组的内容。s = re.sub(r"([.!?])", r"\1", s)# [^...] 不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。s = re.sub(r"[^a-zA-Z.!?]+",r" ", s)return s
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
继续:
# 文件用的英语到其他语言,用reverse标志置换一对这样的数据。
def readlangs(lang1, lang2, reverse= False):print("Reading lines...")#Read the file and split into lineslines = open('data/%s-%s.txt' % (lang1, lang2), encoding='utf-8').\read().strip().split('\n')# Split every line into pairs and normalizepairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]# Reverse pairs, make lang instancesif reverse:pairs = [list(reversed(p)) for p in pairs]input_lang = lang(lang2)output_lang = lang(lang1)else:input_lang = lang(lang1)output_lang = lang(lang2)return input_lang, output_lang, pairs
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
过滤出部分样本:
MAX_LENGTH = 10eng_prefixes = ("i am ", "i m ","he is", "he s ","she is", "she s","you are", "you re ","we are", "we re ","they are", "they re "
)def filterPair(p):return len(p[0].split(' ')) < MAX_LENGTH and \len(p[1].split(' ')) < MAX_LENGTH and \p[1].startswith(eng_prefixes)def filterPairs(pairs):return [ pair for pair in pairs if filterPair(pair)]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
-
The full process for preparing the data is:
- Read text file and split into lines, split lines into pairs
- Normalize text, filter by length and content
- Make word lists from sentences in pairs
def prepareData(lang1, lang2, reverse= False):input_lang, output_lang, pairs = readlangs(lang1,lang2,reverse)print("Read %s sentence pairs " % len(pairs))pairs = filterPairs(pairs)print("Trimmed to %s sentence pairs " % len(pairs))print("Counting words...")for pair in pairs:input_lang.addSentence(pair[0])output_lang.addSentence(pair[1])print("Counted word:")print(input_lang.name,input_lang.n_words)print(output_lang.name, output_lang.n_words)return input_lang, output_lang, pairsinput_lang, output_lang, pairs = prepareData('eng','fra',True)
print(random.choice(pairs))Reading lines...
Read 135842 sentence pairs
Trimmed to 11739 sentence pairs
Counting words...
Counted word:
fra 5911
eng 3965
['elle chante les dernieres chansons populaires.', 'she is singing the latest popular songs.']
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
The Seq2Seq Model
- 允许句子到句子有不同长度和顺序。
The Encoder :
#编码器
class EncoderRNN(nn.Module):def __init__(self, input_size, hidden_size):super(EncoderRNN, self).__init__()self.hidden_size = hidden_size# 指定embedding矩阵W的大小维度self.embedding = nn.Embedding(input_size, hidden_size)# 指定gru单元的大小self.gru = nn.GRU(hidden_size, hidden_size)def forward(self, input, hidden):# 扁平化嵌入矩阵embedded = self.embedding(input).view(1, 1, -1)print("embedded shape:",embedded.shape)output = embeddedoutput, hidden = self.gru(output, hidden)return output, hidden#全0初始化隐层def initHidden(self):# 这个初始化维度可以return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
这里的self.gru = nn.GRU(hidden_size, hidden_size)
中,hidden_size在后面设置为256
print("embedded shape:",embedded.shape)
的结果是:
embedded shape: torch.Size([1, 1, 256])
所以self.gru(output, hidden)
中传递的第一个维度是[1,1,256],被压缩为这样的。
nn.GRU
源码:
The Decoder:
- seq2seq解码器的简化版:指利用encoder的最后输出,称为context vector,
- context vector 作为decoder的初始化隐层状态值
class DecoderRNN(nn.Module):def self__init__(self, hidden_size, output_size):super(DecoderRNN, self).__init__()self.hidden_size = hidden_sizeself.embedding = nn.Embedding(output_size,hidden_size)self.gru = nn.GRU(hidden_size, hidden_size)self.out = nn.Linear(hidden_size, output_size)self.softmax = nn.LogSoftmax(dim=1)def forward(self, input, hidden):output = self.embedding(input).view(1, 1, -1)# 1行X列的shape做reluoutput = F.relu(output)output, hidden = self.gru(output, hidden)#output[0]应该是shape为(*,*)的矩阵output = self.softmax(self.out(output[0]))return output, hiddendef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
Attention Decoder:
- 简单的解码器的缺点:把整个句子做编码成一个向量,信息容易丢失,翻译一个词的时候需要追溯之前很长的距离,一般翻译的对应性也没有利用,如翻译第一个词,对应大概率在原句子的第一个位置的信息。
- encoder的输出向量 会乘以一个attention weights,这个权值用NN来计算完成attn,使用解码器的输入和隐藏状态作为输入。。
- 因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)因为在训练数据中有各种大小的句子,为了实际创建和训练这一层,我们必须选择一个最大的句子长度(输入长度,对于编码器输出)
class AttnDecoderRNN(nn.Module):def __init__(self, hidden_size, output_size, dropout_p = 0.1, max_length=MAX_LENGTH):super(AttnDecoderRNN,self).__init__()self.hidden_size = hidden_sizeself.output_size = output_sizeself.dropout_p = dropout_pself.max_length = max_lengthself.embedding = nn.Embedding(self.output_size, self.hidden_size)self.attn = nn.Linear(self.hidden_size * 2, self.max_length)self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)self.dropout = nn.Dropout(self.dropout_p)#输入向量的维度是10,隐层的长度是10,默认是一层GRUself.gru = nn.GRU(self.hidden_size, self.hidden_size)self.out = nn.Linear(self.hidden_size, self.output_size)def forward(self, input, hidden, encoder_outputs):embedded = self.embedding(input).view(1,1,-1)embedded = self.dropout(embedded)attn_weights = F.softmax(self.attn(torch.cat((embedded[0],hidden[0]),1)),dim=1)# unsqueeze:在指定的轴上多增加一个维度attn_applied = torch.bmm(attn_weights.unsqueeze(0),encoder_outputs.unsqueeze(0))output = torch.cat((embedded[0],attn_applied[0]),1)output = self.attn_combine(output).unsqueeze(0)output = F.relu(output)output, hidden = self.gru(output, hidden)#print("output shape:",output.shape)#print("output[0]:",output[0])output = F.log_softmax(self.out(output[0]),dim=1)return output , hidden, attn_weightsdef initHidden(self):return torch.zeros(1, 1, self.hidden_size, device=device)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
继续准备数据:
def indexesFromSentence(lang, sentence):return [lang.word2index[word] for word in sentence.split(' ')]def tensorFromSentence(lang, sentence):indexes = indexesFromSentence(lang, sentence)indexes.append(EOS_token)return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)def tensorsFromPair(pair):input_tensor = tensorFromSentence(input_lang, pair[0])target_tensor = tensorFromSentence(output_lang, pair[1])return (input_tensor, target_tensor)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
训练模型
- 解码器的第一个输入是SOS符,并且把编码器最后的隐层状态作为解码器的第一隐层状态。
- “Teacher forcing”指用真实样本数据作为下一步的输入,而不是解码器猜测的数据作为下一步输入。
teacher_forcing_ratio = 0.5def train(input_tensor, output_tensor, encoder, decoder, encoder_optimizer,decoder_optimizer, criterion, max_length=MAX_LENGTH):# 这的隐层大小封装在encoder中,然后拿过来在train的时候初始化隐层的大小encoder_hidden = encoder.initHidden()encoder_optimizer.zero_grad()decoder_optimizer.zero_grad()# 第一维度的大小即输入长度input_length = input_tensor.size(0)output_length = output_tensor.size(0)encoder_outputs = torch.zeros(max_length, encoder.hidden_size,device=device)loss = 0for ei in range(input_length):encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)# [0,0]选取最大数组的第一个元素组里的第一个encoder_outputs[ei] = encoder_output[0 , 0]if ei == 0 :print("encoder_output[0, 0] shape: ",encoder_outputs[ei].shape)decoder_input = torch.tensor([[SOS_token]], device=device)decoder_hidden = encoder_output# niubi use_teacher_forcing = True if random.random() < teacher_forcing_ratio else Falseif use_teacher_forcing:# Teacher forcing: Feed the target as the next inputfor di in range(output_length):decoder_ouput,decoder_hidden,decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs)loss = loss + criterion(decoder_ouput, output_tensor[di])decoder_input = output_tensor[di] # Teacher forcingelse:for di in range(output_length):decoder_output,decoder_hidden,decoder_attention=decoder(decoder_input, decoder_hidden, encoder_outputs)topv ,topi = decoder_output.topk(1)decoder_input= topi.squeeze().detach() # # detach from history as inputloss = loss + criterion(decoder_output, output_tensor[di])if decoder_input.item() == EOS_token:break loss.backward()encoder_optimizer.step()decoder_optimizer.step()return loss.item() / target_length
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
好了,模型准备结束:
import time
import mathdef asMinutes(s):m = math.floors(s / 60)s -= m * 60return "%s(- %s)" % (asMinutes(s), asMinutes(rs))def timeSince(since, percent):now = time.time()s = now - sincees = s / (percent)rs = es - sreturn '%s (- %s)' % (asMinutes(s), asMinutes(rs))
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
训练过程:
def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):start = time.time()plot_losses = []print_loss_total = 0 # Reset every print_everyplot_loss_total = 0 # Reset every plot_everyencoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)training_pairs = [tensorsFromPair(random.choice(pairs))for i in range(n_iters)]criterion = nn.NLLLoss()for iter in range(1, n_iters + 1):training_pair = training_pairs[iter - 1]input_tensor = training_pair[0]target_tensor = training_pair[1]loss = train(input_tensor, target_tensor, encoder,decoder, encoder_optimizer, decoder_optimizer, criterion)print_loss_total = loss + print_loss_totalplot_loss_total = loss + plot_loss_total if iter % print_every == 0:print_loss_avg = print_loss_total / print_everyprint_loss_total = 0print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),iter, iter / n_iters * 100, print_loss_avg))if iter % plot_every == 0:plot_loss_avg = plot_loss_total / plot_everyplot_losses.append(plot_loss_avg)plot_loss_total = 0showPlot(plot_losses)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
画图的这段:
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as npdef showPlot(points):plt.figure()fig, ax = plt.subplots()# this locator puts ticks at regular intervalsloc = ticker.MultipleLocator(base=0.2)ax.yaxis.set_major_locator(loc)plt.plot(points)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
验证的代码:
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):with torch.no_grad():input_tensor = tensorFromSentence(input_lang, sentence)input_length = input_tensor.size()[0]encoder_hidden = encoder.initHidden()encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)for ei in range(input_length):encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)encoder_outputs[ei] += encoder_output[0, 0]decoder_input = torch.tensor([[SOS_token]], device=device) # SOSdecoder_hidden = encoder_hiddendecoded_words = []decoder_attentions = torch.zeros(max_length, max_length)for di in range(max_length):decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs)decoder_attentions[di] = decoder_attention.datatopv, topi = decoder_output.data.topk(1)if topi.item() == EOS_token:decoded_words.append('<EOS>')breakelse:decoded_words.append(output_lang.index2word[topi.item()])decoder_input = topi.squeeze().detach()return decoded_words, decoder_attentions[:di + 1]
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
def evaluateRandomly(encoder, decoder, n=10):for i in range(n):pair = random.choice(pairs)print('>', pair[0])print('=', pair[1])output_words, attentions = evaluate(encoder, decoder, pair[0])output_sentence = ' '.join(output_words)print('<', output_sentence)print('')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
最后一步:
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)trainIters(encoder1, attn_decoder1, 75000, print_every=5000)