叉乘
几何图示:
设有
a=(ax,ay,az),b=(bx,by,bz)\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right), \mathbf{b}=\left(b_{x}, b_{y}, b_{z}\right) a=(ax,ay,az),b=(bx,by,bz)
i
,j
,k
分别是X
,Y
,Z
轴方向的单位向量,则:
a×b=(aybz−azby)i+(azbx−axbz)j+(axby−aybx)k\mathbf{a} \times \mathbf{b}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k} a×b=(aybz−azby)i+(azbx−axbz)j+(axby−aybx)k
为了帮助记忆,利用三阶行列式,写成
∣ijkaxayazbxbybz∣\left|\begin{array}{lll} i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array}\right| ∣∣∣∣∣∣iaxbxjaybykazbz∣∣∣∣∣∣
设a=(l,m,n),b=(o,p,q)
,则
a×b=(l,m,n)×(o,p,q)=(mq−np,no−lq,lp−mo)\mathbf{a} \times \mathbf{b}=(l, m, n) \times(o, p, q)=(m q-n p, n o-l q, l p-m o) a×b=(l,m,n)×(o,p,q)=(mq−np,no−lq,lp−mo)
利用三阶行列式,写成
∣ijklmnopq∣\left|\begin{array}{ccc} i & j & k \\ l & m & n \\ o & p & q \end{array}\right| ∣∣∣∣∣∣ilojmpknq∣∣∣∣∣∣
推导
设有三个单位向量i
,j
,k
,则:
i→=(1,0,0)j→=(0,1,0)k→=(0,0,1)\begin{aligned} &\overrightarrow{\mathrm{i}}=(1,0,0) \\ &\overrightarrow{\mathrm{j}}=(0,1,0) \\ &\overrightarrow{\mathrm{k}}=(0,0,1) \end{aligned} i=(1,0,0)j=(0,1,0)k=(0,0,1)
且
i→=j→×k→j→=k→×i→k→=i→×j→k→×j→=−i→i→×k→=−j→j→×i→=−k→i→×i→=j→×j→=k→×k→=0→=0\overrightarrow{\mathrm{i}}=\overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{j}}=\overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{j}}=- \overrightarrow{\mathrm{i}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{k}}=- \overrightarrow{\mathrm{j}}\\ \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{i}}=- \overrightarrow{\mathrm{k}}\\ \overrightarrow{\mathrm{i}} \times \overrightarrow{\mathrm{i}} = \overrightarrow{\mathrm{j}} \times \overrightarrow{\mathrm{j}} = \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{k}} = \overrightarrow{\mathrm{0}} = 0 i=j×kj=k×ik=i×jk×j=−ii×k=−jj×i=−ki×i=j×j=k×k=0=0
i
,j
,k
是三个相互垂直的向量。它们刚好可以构成一个坐标系。
对于处于i
,j
,k
构成的坐标系中的向量u
,v
我们可以如下表示:
u→=(xu,yu,zu)v→=(xv,yv,zv)\begin{aligned} &\overrightarrow{\mathrm{u}}=\left(\mathrm{x}_{\mathrm{u}}, \mathrm{y}_{\mathrm{u}}, \mathrm{z}_{\mathrm{u}}\right) \\ &\overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right) \end{aligned} u=(xu,yu,zu)v=(xv,yv,zv)
u→=Xu⋅i→+yu⋅j→+zu⋅k→v→=Xv⋅i→+yv⋅j→+zv⋅k→\begin{aligned} &\overrightarrow{\mathrm{u}}=\mathrm{X}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}} \\ &\overrightarrow{\mathrm{v}}=\mathrm{X}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}} \end{aligned} u=Xu⋅i+yu⋅j+zu⋅kv=Xv⋅i+yv⋅j+zv⋅k
u→×v→=(xu⋅i→+yu⋅j→+zu⋅k→)×(xv⋅i→+yvj→+zv⋅k→)\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{x}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{u}} \cdot \overrightarrow{\mathrm{k}}\right) \times\left(\mathrm{x}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{i}}+\mathrm{y}_{\mathrm{v}} \overrightarrow{\mathrm{j}}+\mathrm{z}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{k}}\right) u×v=(xu⋅i+yu⋅j+zu⋅k)×(xv⋅i+yvj+zv⋅k)
展开,得:
u→×v→=xu⋅xv⋅(i→⋅i→)+xu⋅yv⋅(i→⋅j→)+xu⋅zv⋅(i→⋅k→)+yu⋅xv⋅(j→⋅i→)+yu⋅yv⋅(j→⋅j→)+yu⋅zv⋅(j→⋅k→)+zu⋅xv⋅(k→⋅i→)+zu⋅yv⋅(k→⋅j→)+zu⋅zv⋅(k→⋅k→)\begin{aligned} \overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=& \mathrm{x}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{i}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{k}}) \\ &+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{i}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{j}})+\mathrm{z}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}} \cdot(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{k}}) \end{aligned} u×v=xu⋅xv⋅(i⋅i)+xu⋅yv⋅(i⋅j)+xu⋅zv⋅(i⋅k)+yu⋅xv⋅(j⋅i)+yu⋅yv⋅(j⋅j)+yu⋅zv⋅(j⋅k)+zu⋅xv⋅(k⋅i)+zu⋅yv⋅(k⋅j)+zu⋅zv⋅(k⋅k)
化简,得:
u⃗×v⃗=0→+xu⋅yv⋅(k⃗)+xu⋅zv⋅(−j⃗)+yu⋅xv⋅(−k⃗)+0→+yu⋅zv⋅(i⃗)+zu⋅xV⋅(j⃗)+zu⋅yv⋅(−i⃗)+0→\begin{gathered} \vec{u} \times \vec{v}=\overrightarrow{0}+x_{u} \cdot y_{v} \cdot(\vec{k})+x_{u} \cdot z_{v} \cdot(-\vec{j}) \\ +y_{u} \cdot x_{v} \cdot(-\vec{k})+\overrightarrow{0}+y_{u} \cdot z_{v} \cdot(\vec{i}) \\ +z_{u} \cdot x_{V} \cdot(\vec{j})+z_{u} \cdot y_{v} \cdot(-\vec{i})+\overrightarrow{0} \end{gathered} u×v=0+xu⋅yv⋅(k)+xu⋅zv⋅(−j)+yu⋅xv⋅(−k)+0+yu⋅zv⋅(i)+zu⋅xV⋅(j)+zu⋅yv⋅(−i)+0
合并,得:
u→×v→=(yu⋅zv−zu⋅yv)⋅(i→)+(zu⋅xv−xu⋅zv)⋅(j→)+(xu⋅yv−yu⋅xv)⋅(k→)\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\left(\mathrm{y}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}-\mathrm{z}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{i}})+\left(\mathrm{z}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}-\mathrm{x}_{\mathrm{u}} \cdot \mathrm{z}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{j}})+\left(\mathrm{x}_{\mathrm{u}} \cdot \mathrm{y}_{\mathrm{v}}-\mathrm{y}_{\mathrm{u}} \cdot \mathrm{x}_{\mathrm{v}}\right) \cdot(\overrightarrow{\mathrm{k}}) u×v=(yu⋅zv−zu⋅yv)⋅(i)+(zu⋅xv−xu⋅zv)⋅(j)+(xu⋅yv−yu⋅xv)⋅(k)
叉乘的几何意义
设
c→=a→×b→\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} c=a×b
则c
的方向垂直于a
与b
所决定的平面,c
的指向按右手定则从a
转向b
来确定。
且c
的长度在数值上等于以a
,b
,夹角为θ
组成的平行四边形的面积。
∣c∣=∣a∣∣b∣⋅sinθ|c|=|a||b|·\sin \theta ∣c∣=∣a∣∣b∣⋅sinθ
右手定则:
若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。
代数规则
-
反交换律
a→×b→=−b→×a→\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=-\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{a}} a×b=−b×a -
加法的分配律
a⃗×(b⃗+c⃗)=a⃗×b⃗+a⃗×c⃗\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c} a×(b+c)=a×b+a×c
-
与标量乘法兼容
ra→×b→=a→×rb→=r×(a→×b→)r\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times r\overrightarrow{\mathrm{b}}=r \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) ra×b=a×rb=r×(a×b) -
不满足结合律,但满足雅可比恒等式
a→×(b→×c→)+b→×(c→×a→)+c→×(a→×b→)=0\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \times(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})+\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) = 0 a×(b×c)+b×(c×a)+c×(a×b)=0 -
分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。
-
两个非零向量a和b平行,当且仅当
a×b=0
。
拉格朗日公式
设向量坐标 a⃗=(x1,y1,z1),b⃗=(x2,y2,z2),c⃗=(x3,y3,z3)\vec{a}=(x 1, y 1, z 1), \vec{b}=(x 2, y 2, z 2), \vec{c}=(x 3, y 3, z 3)a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3), 则
(a⃗×b⃗)×c⃗=(y1z2−z1y2,z1x2−x1z2,x1y2−x2y1)×(x3,y3,z3)=(z1z3x2−x1z2z3−x1y2y3+x2y1y3,x1x3y2−x2x3y1−y1z2z3+z1z3y2,y1y3z2−y2y3z1−x2x3z1+x1x3z2)=(x2(x1x3+y1y3+z1z3),y2(x1x3+y1y3+z1z3),z2(x1x3+y1y3+z1z3))−(x1(x2x3+y2y3+z2z3),y1(x2x3+y2y3+z2z3),z1(x2x3+y2y3+z2z3))=(x2(a⃗⋅c⃗),y2(a⃗⋅c⃗),z2(a⃗⋅c⃗))−(x1(b⃗⋅c⃗),y1(b⃗⋅c⃗),z1(b⃗⋅c⃗))=b⃗(a⃗⋅c⃗)−a⃗(b⃗⋅c⃗)\begin{aligned} &(\vec{a} \times \vec{b}) \times \vec{c}=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-x_{2} y_{1}\right) \times\left(x_{3}, y_{3}, z_{3}\right) \\ &=\left(z_{1} z_{3} x_{2}-x_{1} z_{2} z_{3}-x_{1} y_{2} y_{3}+x_{2} y_{1} y_{3}, x_{1} x_{3} y_{2}-x_{2} x_{3} y_{1}\right. \\ &\left.-y_{1} z_{2} z_{3}+z_{1} z_{3} y_{2}, y_{1} y_{3} z_{2}-y_{2} y_{3} z_{1}-x_{2} x_{3} z_{1}+x_{1} x_{3} z_{2}\right) \\ &=\left(x_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), y_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right), z_{2}\left(x_{1} x_{3}+y_{1} y_{3}+z_{1} z_{3}\right)\right) \\ &-\left(x_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), y_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right), z_{1}\left(x_{2} x_{3}+y_{2} y_{3}+z_{2} z_{3}\right)\right) \\ &=\left(x_{2}(\vec{a} \cdot \vec{c}), y_{2}(\vec{a} \cdot \vec{c}), z_{2}(\vec{a} \cdot \vec{c})\right)-\left(x_{1}(\vec{b} \cdot \vec{c}), y_{1}(\vec{b} \cdot \vec{c}), z_{1}(\vec{b} \cdot \vec{c})\right) \\ &=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c}) \end{aligned} (a×b)×c=(y1z2−z1y2,z1x2−x1z2,x1y2−x2y1)×(x3,y3,z3)=(z1z3x2−x1z2z3−x1y2y3+x2y1y3,x1x3y2−x2x3y1−y1z2z3+z1z3y2,y1y3z2−y2y3z1−x2x3z1+x1x3z2)=(x2(x1x3+y1y3+z1z3),y2(x1x3+y1y3+z1z3),z2(x1x3+y1y3+z1z3))−(x1(x2x3+y2y3+z2z3),y1(x2x3+y2y3+z2z3),z1(x2x3+y2y3+z2z3))=(x2(a⋅c),y2(a⋅c),z2(a⋅c))−(x1(b⋅c),y1(b⋅c),z1(b⋅c))=b(a⋅c)−a(b⋅c)
这就是二重向量叉乘化简公式 (a⃗×b⃗)×c⃗=b⃗(a⃗⋅c⃗)−a⃗(b⃗⋅c⃗)(\vec{a} \times \vec{b}) \times \vec{c}=\vec{b}(\vec{a} \cdot \vec{c})-\vec{a}(\vec{b} \cdot \vec{c})(a×b)×c=b(a⋅c)−a(b⋅c)
转化一下,得
a⃗×(b⃗×c⃗)=b⃗(a⃗⋅c⃗)−c⃗(a⃗⋅b⃗)\vec{a} \times (\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) a×(b×c)=b(a⋅c)−c(a⋅b)