深度学习训练营之海贼王人物识别

news/2024/10/31 3:19:27/

深度学习训练营之海贼王人物识别

  • 原文链接
  • 环境介绍
  • 前置工作
    • 设置GPU
    • 导入数据
    • 数据查看
  • 数据预处理
    • 加载数据
    • 可视化数据
    • 检查数据
    • 配置数据集
      • `prefetch()`功能详细介绍:
    • 归一化
      • 查看归一化后的数据
  • 构建VGG-16网络
  • 网络结构
  • 编译
  • 模型训练
  • 结果可视化

原文链接

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍦 参考文章:365天深度学习训练营-第P4周:海贼王人物识别
  • 🍖 原作者:K同学啊|接辅导、项目定制

环境介绍

  • 语言环境:Python3.9.13
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2

前置工作

设置GPU

如果使用的是CPU就不用设置了

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

导入数据

对数据进行导入,首先是导入需要的包

import matplotlib.pyplot as plt
import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib

调整数据集所在的位置
在这里插入图片描述

data_dir = "D:\BaiduNetdiskDownload\sixday\sixday\hzw_photos"data_dir = pathlib.Path(data_dir)

数据查看

数据集一共分为路飞、索隆、娜美、乌索普、乔巴 、山治、罗宾七个人物角色,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。
对于每一个文件夹来说的含义如下

文件夹含义数量
lufei路飞117 张
suolong索隆90 张
namei娜美84 张
wusuopu乌索普77张
qiaoba乔巴102 张
shanzhi山治47 张
luobin罗宾105张
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)

图片总数为: 621

数据预处理

加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 32
img_height = 224
img_width = 224"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

在这里插入图片描述

通过class_names输出数据集的标签,标签按照字母顺序对应于目录名称

class_names = train_ds.class_names
print(class_names)

在这里插入图片描述

可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

在这里插入图片描述

plt.imshow(images[4].numpy().astype("uint8"))

在这里插入图片描述

检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

在这里插入图片描述

  • Image_batch是形状的张量(32,240,240,3)。这是一批形状240x240x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

配置数据集

  • shuffle():打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
  • prefetch():预取数据,加速运行

prefetch()功能详细介绍:

CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态
使用该函数的作用就在于尽可能的提高CPU等的使用性能,提高模型训练时候的速度
在这里插入图片描述
使用该函数可以减少空闲时间
在这里插入图片描述

  • cache():将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

归一化

normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)normalization_train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))

查看归一化后的数据

image_batch, labels_batch = next(iter(val_ds))
first_image = image_batch[0]# 查看归一化后的数据
print(np.min(first_image), np.max(first_image))

构建VGG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()

在这里插入图片描述

网络结构

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

在这里插入图片描述

编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

模型训练

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)

在这里插入图片描述

结果可视化

对模型进行评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述


http://www.ppmy.cn/news/6035.html

相关文章

解决资源消耗,top的运用记录

第一条命令uptime load average 后面的三个数字,分别代表1分钟、5分钟和15分钟内机器的平均负载 使用top命令解决负载问题 Cpu(s)这一行提供了CPU运行情况信息 这些缩写分别代表了不同含义 (1)us:用户CPU时间 运行非优雅的用户进程所占CPU时间的百…

2-2-3-9-1-1、jdk1.7HashMap详解

目录数据结构链表的作用链表问题数据结构简图源码解析重要成员变量说明构造函数put操作初始化数组Key为null的处理计算hash添加链表节点--新增Entry扩容缺点扩容死锁分析单线程扩容多线程扩容数据结构 jdk1.7的hashmap的底层结构是数组加单向链表实现的。将key的hash值进行取模…

ubuntu20.04 22.04下设置用户只能使用sftp, 不能登录ssh 的配置方法

vi /etc/ssh/sshd_config Match Group sftp ChrootDirectory %h ForceCommand internal-sftp AllowTcpForwarding no 如果是列出单独用户的写法: Match user yonghu1 ChrootDirectory /home/yonghu1/ ForceCommand internal-sftp X11Forwarding no AllowTcpForwa…

python连接mysql数据库

先安装pymysql管理工具 pip install pymysql 写一个py文件, vim ./my_sql.py 内容:(数据库配置) import pymysql dbpymysql.connect(hostlocalhost, userroot, password你的数据库密码 , databasewai_jian, port3306, charset…

序列化 反序列化

序列化 对象转换为二进制文件将 Java 对象转换成字节流的过程 1️⃣序列化过程:是指把一个 Java 对象变成二进制内容,实质上就是一个 byte[]。因为序列化后可以把 byte[] 保存到文件中,或者把 byte[] 通过网络传输到远程(IO),如此…

数据仓库基础与Apache Hive入门

数据仓库基本概念 数据仓库,简称数仓,用于存储、分析、报告的数据系统。数据仓库的目的是构建面向分析的集成化数据环境,分析结果为企业提供决策支持。 数据仓库本身并不生产任何数据,其数据来源于不同的外部系统同时数据仓库自…

Python学习笔记(十九)——Matplotlib入门上

目录 Matplotlib简介 导入matplotlib模块 图的参数说明 matplotlib图像组成部分介绍 matplotlib绘图步骤分析 matplotlib实现简单图像 matplotlib画布 画布-plt.figure() 实例 同一画布制作多张图像 创建多个子图 实例 plt.subplots 相关参数 调整subplot周围的间距…

Typescript部分知识点

布尔值是最基础的数据类型,在 TypeScript 中,使用 boolean 定义布尔值类型: let isDone: boolean false;// 编译通过 // 后面约定,未强调编译错误的代码片段,默认为编译通过 注意:使用构造函数 Boolean 创…