一文打通java中内存泄露

news/2024/11/22 20:28:34/

目录

前置知识

 内存泄漏(memory leak)

内存溢出(out of memory)

Java中内存泄露的8种情况

静态集合类

 单例模式

内部类持有外部类

各种连接,如数据库连接、网络连接和IO连接等

变量不合理的作用域

改变哈希值

缓存泄露

监听器和其他回调


前置知识

 内存泄漏(memory leak)

可达性分析算法来判断对象是否是不再使用的对象,本质都是判断一个对象是否还被引用。那么对于这种情况下,由于代码的实现不同就会出现很多种内存泄漏问题(让JVM误以为此对象还在引用中,无法回收,造成内存泄漏)。

> 是否还被使用?是

> 是否还被需要?否

 严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致00M,也可以叫做宽泛意义上的“内存泄漏”。

如下图,当Y生命周期结束的时候,X依然引用着Y,这时候,垃圾回收期是不会回收对象Y的;如果对象X还引用着生命周期比较短的A、B、C,对象A又引用着对象 a、b、c,这样就可能造成大量无用的对象不能被回收,进而占据了内存资源,造成内存泄漏,直到内存溢出。

申请了内存用完了不释放,比如一共有1024M的内存,分配了512M的内存一直不回收,那么可以用的内存只有512M了,仿佛泄露掉了一部分。

内存溢出(out of memory)

申请内存时,没有足够的内存可以使用;通俗一点儿讲,一个厕所就三个坑,有两个站着茅坑不走的(内存泄漏),剩下最后一个坑,厕所表示接待压力很大,这时候一下子来了两个人,坑位(内存)就不够了,内存泄漏变成内存溢出了。可见,内存泄漏和内存溢出的关系:内存泄漏的增多,最终会导致内存溢出。

泄漏的分类

  1. 经常发生:发生内存泄露的代码会被多次执行,每次执行,泄露一块内存;
  2. 偶然发生:在某些特定情况下才会发生
  3. 一次性:发生内存泄露的方法只会执行一次;
  4. 隐式泄漏:一直占着内存不释放,直到执行结束;严格的说这个不算内存泄漏,因为最终释放掉了,但是如果执行时间特别长,也可能会导致内存耗尽。

Java中内存泄露的8种情况

静态集合类

静态集合类,如HashMap、LinkedList等等。如果这些容器为静态的,那么它们的生命周期与JVM程序一致,则容器中的对象在程序结束之前将不能被释放,从而造成内存泄漏。简单而言,长生命周期的对象持有短生命周期对象的引用,尽管短生命周期的对象不再使用,但是因为长生命周期对象持有它的引用而导致不能被回收。 

public class MemoryLeak {static List list = new ArrayList();public void oomTests(){Object obj=new Object();//局部变量list.add(obj);}
}

 单例模式

单例模式,和静态集合导致内存泄露的原因类似,因为单例的静态特性,它的生命周期和 JVM 的生命周期一样长,所以如果单例对象如果持有外部对象的引用,那么这个外部对象也不会被回收,那么就会造成内存泄漏。

内部类持有外部类

内部类持有外部类,如果一个外部类的实例对象的方法返回了一个内部类的实例对象。这个内部类对象被长期引用了,即使那个外部类实例对象不再被使用,但由于内部类持有外部类的实例对象,这个外部类对象将不会被垃圾回收,这也会造成内存泄漏。

各种连接,如数据库连接、网络连接和IO连接等

在对数据库进行操作的过程中,首先需要建立与数据库的连接,当不再使用时,需要调用close方法来释放与数据库的连接。只有连接被关闭后,垃圾回收器才会回收对应的对象。否则,如果在访问数据库的过程中,对Connection、Statement或ResultSet不显性地关闭,将会造成大量的对象无法被回收,从而引起内存泄漏。

public static void main(String[] args) {try{Connection conn =null;Class.forName("com.mysql.jdbc.Driver");conn =DriverManager.getConnection("url","","");Statement stmt =conn.createStatement();ResultSet rs =stmt.executeQuery("....");} catch(Exception e){//异常日志} finally {// 1.关闭结果集 Statement// 2.关闭声明的对象 ResultSet// 3.关闭连接 Connection}
}

变量不合理的作用域

变量不合理的作用域。一般而言,一个变量的定义的作用范围大于其使用范围,很有可能会造成内存泄漏。另一方面,如果没有及时地把对象设置为null,很有可能导致内存泄漏的发生。

public class UsingRandom {private String msg;public void receiveMsg(){readFromNet();//从网络中接受数据保存到msg中saveDB();//把msg保存到数据库中}
}

 如上面这个伪代码,通过readFromNet方法把接受的消息保存在变量msg中,然后调用saveDB方法把msg的内容保存到数据库中,此时msg已经就没用了,由于msg的生命周期与对象的生命周期相同,此时msg还不能回收,因此造成了内存泄漏。实际上这个msg变量可以放在receiveMsg方法内部,当方法使用完,那么msg的生命周期也就结束,此时就可以回收了。还有一种方法,在使用完msg后,把msg设置为null,这样垃圾回收器也会回收msg的内存空间。

改变哈希值

改变哈希值,当一个对象被存储进HashSet集合中以后,就不能修改这个对象中的那些参与计算哈希值的字段了。

否则,对象修改后的哈希值与最初存储进HashSet集合中时的哈希值就不同了,在这种情况下,即使在contains方法使用该对象的当前引用作为的参数去HashSet集合中检索对象,也将返回找不到对象的结果,这也会导致无法从HashSet集合中单独删除当前对象,造成内存泄漏。

这也是 String 为什么被设置成了不可变类型,我们可以放心地把 String 存入 HashSet,或者把String 当做 HashMap 的 key 值;当我们想把自己定义的类保存到散列表的时候,需要保证对象的 hashCode 不可变。

public class ChangeHashCode {public static void main(String[] args) {HashSet set = new HashSet();Person p1 = new Person(1001, "AA");Person p2 = new Person(1002, "BB");set.add(p1);set.add(p2);p1.name = "CC";//导致了内存的泄漏set.remove(p1); //删除失败System.out.println(set);set.add(new Person(1001, "CC"));System.out.println(set);set.add(new Person(1001, "AA"));System.out.println(set);}
}class Person {int id;String name;public Person(int id, String name) {this.id = id;this.name = name;}@Overridepublic boolean equals(Object o) {if (this == o) return true;if (!(o instanceof Person)) return false;Person person = (Person) o;if (id != person.id) return false;return name != null ? name.equals(person.name) : person.name == null;}@Overridepublic int hashCode() {int result = id;result = 31 * result + (name != null ? name.hashCode() : 0);return result;}@Overridepublic String toString() {return "Person{" +"id=" + id +", name='" + name + '\'' +'}';}
}
/*** 例2*/
public class ChangeHashCode1 {public static void main(String[] args) {HashSet<Point> hs = new HashSet<Point>();Point cc = new Point();cc.setX(10);//hashCode = 41hs.add(cc);cc.setX(20);//hashCode = 51  此行为导致了内存的泄漏System.out.println("hs.remove = " + hs.remove(cc));//falsehs.add(cc);System.out.println("hs.size = " + hs.size());//size = 2System.out.println(hs);}}class Point {int x;public int getX() {return x;}public void setX(int x) {this.x = x;}@Overridepublic int hashCode() {final int prime = 31;int result = 1;result = prime * result + x;return result;}@Overridepublic boolean equals(Object obj) {if (this == obj) return true;if (obj == null) return false;if (getClass() != obj.getClass()) return false;Point other = (Point) obj;if (x != other.x) return false;return true;}@Overridepublic String toString() {return "Point{" +"x=" + x +'}';}
}

缓存泄露

内存泄漏的另一个常见来源是缓存,一旦你把对象引用放入到缓存中,他就很容易遗忘。比如:之前项目在一次上线的时候,应用启动奇慢直到夯死,就是因为代码中会加载一个表中的数据到缓存(内存)中,测试环境只有几百条数据,但是生产环境有几百万的数据。

对于这个问题,可以使用WeakHashMap代表缓存,此种Map的特点是,当除了自身有对key的引用外,此key没有其他引用那么此map会自动丢弃此值。

public class MapTest {static Map wMap = new WeakHashMap();static Map map = new HashMap();public static void main(String[] args) {init();testWeakHashMap();testHashMap();}public static void init() {String ref1 = new String("obejct1");String ref2 = new String("obejct2");String ref3 = new String("obejct3");String ref4 = new String("obejct4");wMap.put(ref1, "cacheObject1");wMap.put(ref2, "cacheObject2");map.put(ref3, "cacheObject3");map.put(ref4, "cacheObject4");System.out.println("String引用ref1,ref2,ref3,ref4 消失");}public static void testWeakHashMap() {System.out.println("WeakHashMap GC之前");for (Object o : wMap.entrySet()) {System.out.println(o);}try {System.gc();TimeUnit.SECONDS.sleep(5);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("WeakHashMap GC之后");for (Object o : wMap.entrySet()) {System.out.println(o);}}public static void testHashMap() {System.out.println("HashMap GC之前");for (Object o : map.entrySet()) {System.out.println(o);}try {System.gc();TimeUnit.SECONDS.sleep(5);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("HashMap GC之后");for (Object o : map.entrySet()) {System.out.println(o);}}}

上面代码和图示主演演示WeakHashMap如何自动释放缓存对象,当init函数执行完成后,局部变量字符串引用weakd1,weakd2,d1,d2都会消失,此时只有静态map中保存中对字符串对象的引用,可以看到,调用gc之后,HashMap的没有被回收,而WeakHashMap里面的缓存被回收了。

监听器和其他回调

内存泄漏第三个常见来源是监听器和其他回调,如果客户端在你实现的API中注册回调,却没有显示的取消,那么就会积聚。需要确保回调立即被当作垃圾回收的最佳方法是只保存它的弱引用,例如将他们保存成为WeakHashMap中的键。


http://www.ppmy.cn/news/59478.html

相关文章

C++“拷贝构造函数”与“等号=赋值运算符重载函数”的使用注意事项

文章目录 本文主要搞清楚以下两种写法区别&#xff1a;&#xff08;看不懂的话可以把 *p_m1换成 m1&#xff09; 拷贝构造函数 MyClass m2(*p_m1); // 或&#xff1a;MyClass m2 *p_m1;等号赋值运算符重载函数 MyClass m2; m2 *p_m1;先看一段代码&#xff1a; #include &l…

Python--一言不合就try一下?

这里需要注意的是错误是Error&#xff0c;异常是Exception。 异常是可以被捕捉的&#xff0c;被处理的&#xff0c;但是错误是不能被捕获的。异常官方文档 ❝ 我们一般情况下&#xff0c;习惯性的叫pycharm控制台给出的红色字体叫报错。其实不然&#xff0c;是异常。 ❞ 异常产…

利用Python如何实现数据驱动的接口自动化测试

目录 前言 1、需求 2、方案 3、实现 总结 前言 大家在接口测试的过程中&#xff0c;很多时候会用到对CSV的读取操作&#xff0c;本文主要说明Python3对CSV的写入和读取。下面话不多说了&#xff0c;来一起看看详细的介绍吧。 1、需求 某API&#xff0c;GET方法&#xff…

Vulkan实战之Instance

文章目录 创建实例(**Creating an instance**)检查扩展支持(**Checking for extension support**)销毁清除(**Cleaning up**)最终代码 创建实例(Creating an instance) 您需要做的第一件事是通过创建一个实例来初始化Vulkan库。实例是应用程序和Vulkan库之间的连接&#xff0c…

Android9.0 原生系统SystemUI下拉状态栏和通知栏视图之锁屏通知布局

1.前言 在9.0的系统rom定制化开发中,对于系统原生systemui的锁屏界面的功能也是非常重要的,所以在锁屏页面布局中,也是有通知栏布局的,所以接下来对于息屏亮屏 通知栏布局的相关流程分析,看下亮屏后锁屏页面做了哪些功能 2.原生系统SystemUI下拉状态栏和通知栏视图之锁…

总结一下vue的关键字和用处

Vue.js 是一个轻量级的 JavaScript 框架&#xff0c;用于构建用户界面和单页面应用程序。下面是一些 Vue.js 中的关键字和它们的用途&#xff1a; v-bind&#xff1a;用于动态绑定属性和事件监听器。例如&#xff0c;可以用 v-bind 绑定一个元素的属性&#xff08;如&#xff…

node.js的核心模块

node的核心模块由一些精简而高效的库组成 文章目录 全局对象全局对象和全局变量processcosole utilutils.inheritsutils.inspect 事件机制事件发射器error 事件继承EventEmitter 文件系统访问fs.readFile(filename,[encoding],[callback(err,data)])fs.readFileSync(filename,…

Python小姿势 - ## Python中的迭代器与生成器

Python中的迭代器与生成器 在Python中&#xff0c;迭代是一个非常重要的概念&#xff0c;迭代器和生成器是迭代的两种最常见的形式。那么&#xff0c;迭代器与生成器有何不同呢&#xff1f; 首先&#xff0c;我们先来了解一下迭代器。 迭代器是一种对象&#xff0c;它可以记住遍…