前置知识:
- 直接积分法
- 有理函数的不定积分
简单的无理函数的不定积分
对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。
注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得到的有理式。
形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx ∫R(x,cx+dax+b)dx的积分
求形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx ∫R(x,cx+dax+b)dx的积分,其中 a d ≠ b c ad\neq bc ad=bc。
令 t n = a x + b c x + d t^n=\dfrac{ax+b}{cx+d} tn=cx+dax+b,则 x = d t n − b a − c t n x=\dfrac{dt^n-b}{a-ct^n} x=a−ctndtn−b, d x = a d − b c ( a − c t n ) 2 n t n − 1 d t dx=\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt dx=(a−ctn)2ad−bcntn−1dt,从而把原积分变换为有理函数的积分。
∫ R ( x , a x + b c x + d ) d x = ∫ R ( d t n − b a − c t n , t ) ⋅ a d − b c ( a − c t n ) 2 n t n − 1 d t \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx=\int R(\dfrac{dt^n-b}{a-ct^n},t)\cdot\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt ∫R(x,cx+dax+b)dx=∫R(a−ctndtn−b,t)⋅(a−ctn)2ad−bcntn−1dt
例题
计算 ∫ 1 ( x − 1 ) ( x + 1 ) 2 3 d x \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}dx ∫3(x−1)(x+1)21dx
解:
\qquad 令 t = x + 1 x − 1 3 t=\sqrt[3]{\dfrac{x+1}{x-1}} t=3x−1x+1,则 x = t 3 + 1 t 3 − 1 x=\dfrac{t^3+1}{t^3-1} x=t3−1t3+1, d x = − 6 t 2 ( t 3 − 1 ) 2 d t dx=-\dfrac{6t^2}{(t^3-1)^2}dt dx=−(t3−1)26t2dt,于是
\qquad 原式 = ∫ x + 1 x − 1 3 ⋅ 1 x + 1 d x = − ∫ t ⋅ ( 1 2 ⋅ t 3 − 1 t 3 ) ⋅ 6 t 2 ( t 3 − 1 ) 2 d t =\int \sqrt[3]{\dfrac{x+1}{x-1}}\cdot\dfrac{1}{x+1}dx=-\int t\cdot(\dfrac 12\cdot\dfrac{t^3-1}{t^3})\cdot \dfrac{6t^2}{(t^3-1)^2}dt =∫3x−1x+1⋅x+11dx=−∫t⋅(21⋅t3t3−1)⋅(t3−1)26t2dt
= − ∫ 3 t 3 − 1 d t = ∫ ( − 1 t − 1 + t + 2 t 2 + t + 1 ) d t \qquad\qquad =-\int \dfrac{3}{t^3-1}dt=\int(-\dfrac{1}{t-1}+\dfrac{t+2}{t^2+t+1})dt =−∫t3−13dt=∫(−t−11+t2+t+1t+2)dt
= − ln ∣ t − 1 ∣ + 1 2 ∣ t 2 + t + 1 ∣ + 3 arctan ( 2 t + 1 3 ) + C \qquad\qquad =-\ln|t-1|+\dfrac 12|t^2+t+1|+\sqrt 3\arctan(\dfrac{2t+1}{\sqrt 3})+C =−ln∣t−1∣+21∣t2+t+1∣+3arctan(32t+1)+C
= 1 2 ln t 3 − 1 ( t − 1 ) 3 + 3 arctan ( 2 t + 1 3 ) + C \qquad\qquad =\dfrac 12\ln\dfrac{t^3-1}{(t-1)^3}+\sqrt3\arctan(\dfrac{2t+1}{\sqrt 3})+C =21ln(t−1)3t3−1+3arctan(32t+1)+C
= 1 2 ln ∣ 2 x − 1 ( x + 1 x − 1 − 1 ) 3 ∣ + 3 arctan [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =\dfrac 12\ln|\dfrac{\frac{2}{x-1}}{(\sqrt{\frac{x+1}{x-1}}-1)^3}|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln∣(x−1x+1−1)3x−12∣+3arctan[323x−1x+1+31]+C
= − 1 2 ln ∣ x − 1 2 ∣ − 3 2 ln ∣ x + 1 x − 1 3 − 1 ∣ + 3 arctan [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =-\dfrac12\ln|\dfrac{x-1}{2}|-\dfrac 32\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =−21ln∣2x−1∣−23ln∣3x−1x+1−1∣+3arctan[323x−1x+1+31]+C
形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c)的积分
求形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c)的积分,其中 a ≠ 0 a\neq 0 a=0。
这个无理式可以化为以下三种形式:
- ∫ R ( x , ( x + p ) 2 + q 2 ) d x \int R(x,\sqrt{(x+p)^2+q^2})dx ∫R(x,(x+p)2+q2)dx
- ∫ R ( x , ( x + p ) 2 − q 2 ) d x \int R(x,\sqrt{(x+p)^2-q^2})dx ∫R(x,(x+p)2−q2)dx
- ∫ R ( x , q 2 − ( x + p ) 2 ) d x \int R(x,\sqrt{q^2-(x+p)^2})dx ∫R(x,q2−(x+p)2)dx
对这三种情况,可以由以下变换将它们化为三角有理式的积分:
- x + p = q tan t x+p=q\tan t x+p=qtant
- x + p = q sec t x+p=q\sec t x+p=qsect
- x + p = q sin t x+p=q\sin t x+p=qsint
例题
计算 ∫ x 2 − 2 x + 2 x − 1 d x \int \dfrac{\sqrt{x^2-2x+2}}{x-1}dx ∫x−1x2−2x+2dx
解:
\qquad 令 x − 1 = tan t x-1=\tan t x−1=tant,则 x 2 − 2 x + 2 = tan 2 t + 1 = 1 cos t \sqrt{x^2-2x+2}=\sqrt{\tan^2 t+1}=\dfrac{1}{\cos t} x2−2x+2=tan2t+1=cost1, 1 cos 2 t d t \dfrac{1}{\cos^2 t}dt cos2t1dt,于是
\qquad 原式 = 1 sin t ⋅ 1 cos 2 t d t = ∫ 1 ( cos 2 t − 1 ) cos 2 t ⋅ ( − sin t ) d t =\dfrac{1}{\sin t}\cdot\dfrac{1}{\cos^2t}dt=\int\dfrac{1}{(\cos^2t-1)\cos^2 t}\cdot(-\sin t)dt =sint1⋅cos2t1dt=∫(cos2t−1)cos2t1⋅(−sint)dt
= ∫ ( 1 cos 2 t − 1 − 1 cos 2 t ) d ( cos t ) = 1 2 ln ∣ cos t − 1 cos t + 1 ∣ + 1 cos t + C \qquad\qquad =\int(\dfrac{1}{\cos^2 t-1}-\dfrac{1}{\cos^2 t})d(\cos t)=\dfrac 12\ln|\dfrac{\cos t-1}{\cos t+1}|+\dfrac{1}{\cos t}+C =∫(cos2t−11−cos2t1)d(cost)=21ln∣cost+1cost−1∣+cost1+C
= 1 2 ln ∣ ( cos t − 1 ) 2 cos t 2 − 1 ∣ + x 2 − 2 x + 2 + C = 1 2 ln ( 1 − cos t sin t ) 2 + x 2 − 2 x + 2 + C \qquad\qquad =\dfrac 12\ln|\dfrac{(\cos t-1)^2}{\cos t^2-1}|+\sqrt{x^2-2x+2}+C=\dfrac 12\ln(\dfrac{1-\cos t}{\sin t})^2+\sqrt{x^2-2x+2}+C =21ln∣cost2−1(cost−1)2∣+x2−2x+2+C=21ln(sint1−cost)2+x2−2x+2+C
= ln ∣ 1 cos t − 1 tan x ∣ + x 2 − 2 x + 2 + C = ln ∣ x 2 − 2 x + 2 − 1 x − 1 ∣ + x 2 − 2 x + 2 + C \qquad\qquad =\ln|\dfrac{\frac{1}{\cos t}-1}{\tan x}|+\sqrt{x^2-2x+2}+C=\ln|\dfrac{\sqrt{x^2-2x+2}-1}{x-1}|+\sqrt{x^2-2x+2}+C =ln∣tanxcost1−1∣+x2−2x+2+C=ln∣x−1x2−2x+2−1∣+x2−2x+2+C
总结
对于这些简单的无理函数的不定积分,要善于换元,将无理函数的不定积分转化为有理函数的不定积分,然后运用之前的知识来求解即可。