Linux中的阻塞机制

news/2025/1/1 22:39:07/

我们知道在字符设备驱动中,应用层调用read、write等系统调用终会调到驱动中对应的接口。 可以当应用层调用read要去读硬件的数据时,硬件的数据未准备好,那我们该怎么做?

一种办法是直接返回并报错,但是这样应用层要获得数据需要不断的调用read去访问硬件,进程的上下文在用户空间和内核空间不停的切换,耗费了CPU的资源,降低了系统效率。那么有没有更好的办法呢? 答案是有的,在这种情况下我们就可以利用Linux的阻塞机制,实现阻塞访问。

一、阻塞和非阻塞

阻塞操作是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。而非阻塞操作的进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。

二、等待队列

在 Linux 驱动程序中,可以使用等待队列(wait queue)来实现阻塞进程的唤醒。wait queue 很早就作为一个基本的功能单位出现在 Linux 内核里了,它以队列为基础数据结构,与进程调度机制紧密结合,能够用于实现内核中的异步事件通知机制。等待队列可以用来同步对系统资源的访问,信号量在内核中也依赖等待队列来实现。

希望等待特定事件的进程把自己放进合适的等待队列,并放弃控制权。因此,等待队列是一组睡眠的进程,当某一条件变为真时,由内核唤醒他们。

等待队列是一个具有头节点的双向循环链表,把所有睡眠的进程连接起来,每个节点元素都有进程相关的信息

等待队列示意图1

等待队列示意图2

1,等待队列头

每个等待队列都有一个等待队列头,驱动注意操作等待队列头来实现阻塞的功能,二等待队列项的内容不需要关心,因为等待队列是由中断处理程序和主要内核函数修改的,其双向链表必须进行保护,防止多进程同时进行访问修改,造成不可预知的后果,所以定义了lock来锁住链表操作的区域

等待队列头结构体的定义:内核使用等待队列头来挂起一个进程,也使用等待队列头来唤醒进程

struct __wait_queue_head {

spinlock_t lock; //自旋锁变量,用于在对等待队列头

struct list_head task_list; // 指向等待队列的list_head

};

typedef struct __wait_queue_head wait_queue_head_t;

操作函数

#include <linux/sched.h>

#include <linux/wait.h>

1).定义“等待队列头”

wait _ queue _ head _ t my _ queue;

2) .初始化“等待队列头”。

void init_waitqueue_head(wait_queue_head_t *);

而下面的 DECLARE_WAIT_QUEUE_HEAD()宏可以作为定义并初始化等待队列头的“快捷方式”。

DECLARE_WAIT_QUEUE_HEAD(name);

3).条件等待/休眠函数 一边休眠等待条件

//当cond条件是false(0)则休眠(不可中断版,不推荐使用)

void wait_event(wait_queue_head_t wq, int cond);

上面程序的执行过程:

1.用当前的进程描述块(PCB)初始化一个wait_queue描述的等待任务。

2.在等待队列锁资源的保护下,将等待任务加入等待队列。

3.判断等待条件是否满足,如果满足,那么将等待任务从队列中移出,退出函数。

4.如果条件不满足,那么任务调度,将CPU资源交与其它任务。

5.当睡眠任务被唤醒之后,需要重复(2)、(3)步骤,如果确认条件满足,退出等待事件函数。

使用举例: flag可以是一个条件表达式

static wait_queue_head_t wq;

init_waitqueue_head(&wq);//初始化等待队列头

//if(!flag){

while(!flag){ //条件不满足

if(wait_event_interruptible(wq,flag)) //如果是被其他信号唤醒则返回错误

return -ERESTARTSYS;

}

使用 while 而不使用if的原因是:wait_event_interruptible

可以被中断及信号打断,使用while(1),可以避免被打断的情况。

注:其实可以不用加while,查看内核源码的用法,如果被中断或者信号打断,直接返回错误。

flag = 1; //先设置条件,再唤醒

wake_up(&wq); //条件满足时唤醒等待队列头上所有的进程

//当cond条件是false(0)则休眠(超时版,timeout是超时值,单位是计数值)

//超时返回值为0 ,被唤醒大于0 需判断返回值

int wait_event_timeout(wait_queue_head_t wq, int condition, unsigend long timeout);

//当cond条件是false则休眠(可中断版)

//返回值:打断:负数,绝对值是错误码,成功0 返回值需要做判断

int wait_event_interruptible(wait_queue_head_t wq, int condition);

//当cond条件是false则休眠(可超时中断版)

//打断:负数,绝对值是错误码; 超时:0; 条件满足:>0

int wait_event_interruptible_timeout(wait_queue_head_t wq, int condition, unsigend long timeout);

4).唤醒函数 另一边条件成熟时唤醒

void wake_up(wait_queue_head_t *) //能唤醒所以状态的进程

void wake_up_interruptible(wait_queue_head_t *) //只适用于interruptible,配对使用

注意:唤醒函数当条件满足时,一定要先设置条件condition,再唤醒调用唤醒函数。因为等待睡眠函数返回后会首先检查condition是否满足,若不满足会继续睡

如: counter = count;

wake_up_interruptible(&wq);

2,等待队列项

定义等待对列:

struct __wait_queue {

unsigned int flags; //prepare_to_wait()里有对flags的操作,查看以得出其含义

#define WQ_FLAG_EXCLUSIVE 0x01 //一个常数,在prepare_to_wait()用于修改flags的值

void * private //通常指向当前任务控制块

wait_queue_func_t func; //唤醒阻塞任务的函数 ,决定了唤醒的方式

struct list_head task_list; // 阻塞任务链表

};

typedef struct __wait_queue wait_queue_t;

1) 定义一个等待队列

wait_queue_t wait;

2) 初始化等待队列

内核中定义的接口如下:

static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)

{

q->flags = 0;

q->private = p; //私有数据指针,一般指向当前任务控制块

q->func = default_wake_function; //使用默认的唤醒函数

}

使用范例:

init_waitqueue_entry(&wait, current);

3) 添加/ 等待队列。

void fastcall add _ wait _ queue(wait _ queue _ head _ t *q, wait _ queue _ t *wait);

add_wait_queue()用于将等待队列 wait 添加到等待队列头 q 指向的等待队列链表

4)移除等待队列。

void fastcall remove _ wait _ queue(wait _ queue _ head _ t *q, wait _ queue _ t *wait);

remove_wait_queue()用于将等待队列 wait 从附属的等待队列头 q 指向的等待队列链表中移除。

5)判断等待队列是否为空。

static inline int waitqueue_active(wait_queue_head_t *q)

{

return ! list_empty(&q->task_list);

}

判断等待对列头是否为空,当一个进程访问设备而得不到资源时就会被放入等待队列头指向的等待队列中。

三、函数 sleep_on的实现

Sleep()函数相信大家早已耳熟能详了,可是内部究竟是怎么实现的呢?让我们一起来揭开它的面纱

void sleep_on(wait_queue_head_t *wq)

{

wait_queue_t wait; //定义等待队列

init_waitqueue_entry(&wait, current); //初始化等待队列

current->state = TASK_UNINTERRUPTIBALE; //设置进程状态

add_wait_queue(wq,&wait); //加入等待队列

schedule(); //调度,当前进程进入睡眠

remove_wait_queue(wq,&wait); //醒后从等待队列中移除

}

可以发现,程序之所以能睡眠,是因为他改变了自己的状态,并执行调度,放弃了占用CPU。但是我们要唤醒进程,必须要找到它,怎么找到它呢,关键就在于进程在睡眠前我们把它加入了等待对应,只要找到等待队列我们就能找到挂起的进程并唤醒它。

相信进过前面的介绍大家应该对等待队列和linux中的阻塞机制有更深的了解了吧。

对嵌入式物联网感兴趣的小伙伴,可以多了解一下相关信息。(看过来)


http://www.ppmy.cn/news/55888.html

相关文章

【Python数学建模常用算法代码——蒙特卡洛模型】

蒙特卡洛 前言例一&#xff1a;计算圆周率pi&#xff08;π&#xff09;值例二&#xff1a;计算函数定积分值例三&#xff1a;计算函数极值&#xff0c;可避免陷入局部极值 前言 蒙特卡洛方法的理论支撑其实是概率论或统计学中的大数定律。基本原理简单描述是先大量模拟&#…

全面了解 Grid 布局

grid 布局简介 Grid 布局是一种用于网页布局的 CSS 技术&#xff0c;它允许开发者定义一个元素内部的行和列&#xff0c;并在这些网格中放置子元素&#xff0c;是一个强大的布局方式。 容器属性 Grid 布局需要在父容器上设置 display 属性为 grid 或 inline-grid&#xff0c;以…

如何优化clickhouse分布式表的join查询性能

如何优化clickhouse分布式表的join查询性能 如何优化clickhouse分布式表的join查询性能 优化要点 在ClickHouse中&#xff0c;分布式表的Join查询性能可以通过以下几种方式进行优化&#xff1a; 1. 避免跨分片Join操作 在分布式表的Join操作中&#xff0c;如果需要跨多个分…

Nginx 如何配置使用HTTPS服务

步骤一&#xff1a;下载Nginx 从官网&#xff1a;nginx news 下载对应平台系统和版本的软件包&#xff0c;解压到指定目录。 步骤二&#xff1a;编辑Nginx配置 将下载的 nginx.conf 文件用文本编辑器打开&#xff0c;修改或者直接复制下面的内容去粘贴&#xff1a; events …

容器镜像的导入导出

容器镜像的导入导出 第1关&#xff1a;导入导出容器 任务描述 ​ 本关任务是学习导入导出容器&#xff0c;要求学习者参照示例完成将busyboxContainer容器的文件系统保存为一个tar包&#xff0c;通过该tar包导入一个busybox:v1.0镜像。 相关知识 将 "容器的文件系统&…

宝塔面板+悟空CRM功能模块安装搭建部署教程 环境配置

悟空CRM目录结构 wk_modules ├── module – 无代码模块 ├── common – 基础模块 平台使用的主要技术栈 名称 版本 说明 spring-cloud-alibaba 2021.0.4 核心框架 spring-boot 2.6.11 spring版本 mybatis-plus 3.5.2 ORM框架 nacos 2.1.0 注册中心以及配置管理 seata 1.2.…

docker compose 安装kafka集群

使用docker compsose部署kafka&#xff0c;方便快捷&#xff0c;启动方便。 1. 拉去镜像 docker pull bitnami/zookeeper:3.6 docker pull bitnami/kafka:3.0 docker pull hlebalbau/kafka-manager 2. 编辑docker compose文件 version: "3" services: zookeeper…

SpringTask任务调度工具的使用

1. Spring Task 1.1 介绍 Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 **定位&#xff1a;**定时任务框架 **作用&#xff1a;**定时自动执行某段Java代码 应用场景&#xff1a; 1). 信用卡每月还款提醒 **强调&…