Exponentiation

news/2024/11/19 11:43:30/

Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent or power n, and pronounced as “b (raised) to the (power of) n”.[1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:[1]

{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}{\displaystyle b^{n}=\underbrace {b\times b\times \dots \times b\times b} _{n{\text{ times}}}.}
The exponent is usually shown as a superscript to the right of the base. In that case, bn is called “b raised to the nth power”, “b (raised) to the power of n”, “the nth power of b”, “b to the nth power”,[2] or most briefly as “b to the nth”.

Starting from the basic fact stated above that, for any positive integer {\displaystyle n}n, {\displaystyle b{n}}b{n} is {\displaystyle n}n occurrences of {\displaystyle b}b all multiplied by each other, several other properties of exponentiation directly follow. In particular:

{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}{\displaystyle {\begin{aligned}b^{n+m}&=\underbrace {b\times \dots \times b} _{n+m{\text{ times}}}\[1ex]&=\underbrace {b\times \dots \times b} _{n{\text{ times}}}\times \underbrace {b\times \dots \times b} _{m{\text{ times}}}\[1ex]&=b^{n}\times b^{m}\end{aligned}}}
In other words, when multiplying a base raised to one exponent by the same base raised to another exponent, the exponents add. From this basic rule that exponents add, we can derive that {\displaystyle b{0}}b{0} must be equal to 1, as follows. For any {\displaystyle n}n, {\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}{\displaystyle b^{0}\cdot b{n}=b{0+n}=b^{n}}. Dividing both sides by {\displaystyle b{n}}b{n} gives {\displaystyle b{0}=b{n}/b^{n}=1}{\displaystyle b{0}=b{n}/b^{n}=1}.

The fact that {\displaystyle b{1}=b}b{1}=b can similarly be derived from the same rule. For example, {\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}{\displaystyle (b{1}){3}=b^{1}\cdot b^{1}\cdot b{1}=b{1+1+1}=b^{3}}. Taking the cube root of both sides gives {\displaystyle b{1}=b}b{1}=b.

The rule that multiplying makes exponents add can also be used to derive the properties of negative integer exponents. Consider the question of what {\displaystyle b{-1}}b{-1} should mean. In order to respect the “exponents add” rule, it must be the case that {\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}{\displaystyle b^{-1}\cdot b{1}=b{-1+1}=b^{0}=1}. Dividing both sides by {\displaystyle b^{1}}{\displaystyle b^{1}} gives {\displaystyle b{-1}=1/b{1}}{\displaystyle b{-1}=1/b{1}}, which can be more simply written as {\displaystyle b^{-1}=1/b}{\displaystyle b^{-1}=1/b}, using the result from above that {\displaystyle b{1}=b}b{1}=b. By a similar argument, {\displaystyle b{-n}=1/b{n}}{\displaystyle b{-n}=1/b{n}}.

The properties of fractional exponents also follow from the same rule. For example, suppose we consider {\displaystyle {\sqrt {b}}}\sqrt{b} and ask if there is some suitable exponent, which we may call {\displaystyle r}r, such that {\displaystyle b^{r}={\sqrt {b}}}{\displaystyle b^{r}={\sqrt {b}}}. From the definition of the square root, we have that {\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}{\displaystyle {\sqrt {b}}\cdot {\sqrt {b}}=b}. Therefore, the exponent {\displaystyle r}r must be such that {\displaystyle b^{r}\cdot b^{r}=b}{\displaystyle b^{r}\cdot b^{r}=b}. Using the fact that multiplying makes exponents add gives {\displaystyle b^{r+r}=b}{\displaystyle b^{r+r}=b}. The {\displaystyle b}b on the right-hand side can also be written as {\displaystyle b^{1}}{\displaystyle b^{1}}, giving {\displaystyle b{r+r}=b{1}}{\displaystyle b{r+r}=b{1}}. Equating the exponents on both sides, we have {\displaystyle r+r=1}{\displaystyle r+r=1}. Therefore, {\displaystyle r={\frac {1}{2}}}r={\frac {1}{2}}, so {\displaystyle {\sqrt {b}}=b^{1/2}}{\displaystyle {\sqrt {b}}=b^{1/2}}.

The definition of exponentiation can be extended to allow any real or complex exponent. Exponentiation by integer exponents can also be defined for a wide variety of algebraic structures, including matrices.

Exponentiation is used extensively in many fields, including economics, biology, chemistry, physics, and computer science, with applications such as compound interest, population growth, chemical reaction kinetics, wave behavior, and public-key cryptography.

在这里插入图片描述

Graphs of y = bx for various bases b: base 10, base e, base 2, base
1
/
2
. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

Contents
1 History of the notation
2 Terminology
3 Integer exponents
3.1 Positive exponents
3.2 Zero exponent
3.3 Negative exponents
3.4 Identities and properties
3.5 Powers of a sum
3.6 Combinatorial interpretation
3.7 Particular bases
3.7.1 Powers of ten
3.7.2 Powers of two
3.7.3 Powers of one
3.7.4 Powers of zero
3.7.5 Powers of negative one
3.8 Large exponents
3.9 Power functions
3.10 Table of powers of decimal digits
4 Rational exponents
5 Real exponents
5.1 Limits of rational exponents
5.2 The exponential function
5.3 Powers via logarithms
6 Complex exponents with a positive real base
7 Non-integer powers of complex numbers
7.1 nth roots of a complex number
7.1.1 Roots of unity
7.2 Complex exponentiation
7.2.1 Principal value
7.2.2 Multivalued function
7.2.3 Computation
7.2.3.1 Examples
7.2.4 Failure of power and logarithm identities
8 Irrationality and transcendence
9 Integer powers in algebra
9.1 In a group
9.2 In a ring
9.3 Matrices and linear operators
9.4 Finite fields
10 Powers of sets
10.1 Sets as exponents
10.2 In category theory
11 Repeated exponentiation
12 Limits of powers
13 Efficient computation with integer exponents
14 Iterated functions
15 In programming languages
16 See also


http://www.ppmy.cn/news/5578.html

相关文章

四、二维线实体类(AcGeLinearEnt2d)

四、二维线实体类(AcGeLinearEnt2d) 继承关系:为二维曲线类(AcGeCurve2d)的派生类,见第一条类图 派生类 直线:AcGeLine2d,对应数据库类型AcDbXline 线段:AcGeLineSeg2d&a…

0基础转软件测试该学些什么?

前言 有很多人员会不断问自己,自己到底要不要学测试,或者要不要转行做测试,测试的职业发展到底怎么样?如果你还在迷茫,在到处找各种大牛问类似的问题,我希望这篇文章,你看完能够结束你的这个烦…

JDBC编程步骤、JDBC API详解和数据库连接池

前言: JDBC 就是使用Java语言操作关系型数据库的一套API ,全称:( Java DataBase Connectivity ) Java 数据库连接。官方(sun公司)定义的一套操作所有关系型数据库的规则,即 接口各个数据库厂商去实现这套…

数据管理篇之数据质量

第15章 数据质量 1.数据质量保障原则 完整性 准确性 一致性 及时性 2.数据质量方法概述 消费场景知晓 (1)数据资产定义 分为五个等级: ① 毁灭性质(A1),数据一旦出错,将会引起重大资产损失&a…

通过 Request 请求获取真实 IP 地址以及对应省份城市

title: 通过 Request 请求获取真实 IP 地址以及对应省份城市和系统浏览器信息 date: 2022-12-16 16:20:26 tags: GeoIP2UserAgentUtils categories:开发实践 cover: https://cover.png feature: false 1. 获取真实 IP 地址 1.1 代码 代码如下,这里的 CommonUtil.…

六、http模块

HTTP —— 超文本传输协议,用于规范客户端浏览器和服务端以何种格式进行通信和数据交互;HTTP由请求和响应构成的,是一个标准的客服端服务器模型。 HTTP请求响应过程 先简单的来了解以下HTTP的请求响应过程:1.地址解析&#xff1a…

vue实现将自己网站(h5链接)分享到微信中形成小卡片(超详细)

大家好,我是雄雄。 前言 我们在分享公众号信息到微信或者群中的时候,会出现一个小卡片,如下所示: 但是呢,这种小卡片只能走微信的接口来实现,比如我们从公众号、小程序中分享的内容可以是这样的。如果我们…

python接口自动化测试 - mock模块基本使用介绍

mock简介 py3已将mock集成到unittest库中为的就是更好的进行单元测试简单理解,模拟接口返回参数通俗易懂,直接修改接口返回参数的值官方文档:unittest.mock --- 模拟对象库 — Python 3.11.1 文档 mock作用 解决依赖问题,达到解…