-
-
目录
前言
一、数字时钟课设目标
二、部分代码
1.clock.v代码的编写
2.完整代码
3.仿真代码
总结
-
前言
学校黄老师的FPGA的设计课设,最后的课设为数字时钟,实现分时的计数功能,带有整点报时,按键调节的功能,供电子类学生学习和参考。
一、数字时钟课设目标
1、能进行正常的时、分、秒计时功能,分别由6个数码管显示24小时、60分钟、60秒钟的计数器显示。
2、能利用实验系统上的按键实现“校时”“校分”功能:
⑴按下“SA”键时,计时器迅速递增,并按24小时循环,计满23小时后回“00”;
⑵按下“SB”键时,计分器迅速递增,并按59分钟循环,计满59分钟后回“00”,但不向“时”进位;
⑷要求按下“SA”、“SB”或“SC”时均不产生数字跳变(SA”、“SB”、“SC”按键是有抖动的,必须对其消除抖动处理)。
3、能利用扬声器做整点报时:
⑴当计时到达59分50秒时开始报时,在59分50秒、52秒、54秒、56秒、58秒鸣叫,鸣叫声频率可定为512Hz;
⑵到达59分60秒时为最后一声整点报时,整点报时频率可定为1024Hz。
4、用层次化设计方法设计该电路,用Verilog语言编写各个功能模块。
5、完成电路设计后,用实验系统下载验证。
要求实现闹铃功能,准确到分钟。用功能仿真的方法验证,可通过观察有关波形确认电路设计是否正确。
二、部分代码
1.clock.v代码的编写
秒计数器
reg [25:0] cnt2;
wire add_cnt2;
wire end_cnt2;
always@(posedge clk or negedge rst_n)begin //1s计数,可以通过按键更改if(rst_n == 0)
cnt2 <= 0;
else if (add_cnt2)beginif(end_cnt2)cnt2 <= 0;elsecnt2 <= cnt2 +1;end
endassign add_cnt2 = 1;
assign end_cnt2 = add_cnt2 && cnt2 == y-1;//y可以通过按键更改,实现按键调节时钟频率
us计数器
reg [8:0] cnt0;always@(posedge clk or negedge rst_n) //数码管显示if(rst_n == 0)cnt0 <= 0;else if (add_cnt0)beginif(end_cnt0 )cnt0 <= 0;elsecnt0 <= cnt0 +1;endassign add_cnt0 = 1;
assign end_cnt0 = add_cnt0 && cnt0== TIME_1US-1;//通过短时间的数码管显示,实现动态扫描
数码管显示 对4个数码管进行us级的循环点亮,达到视觉上的暂留
reg [2:0] cnt1;
wire add_cnt1;
wire end_cnt1;always@(posedge clk or negedge rst_n)begin //4个数码管if(rst_n == 0)
cnt1 <= 0;
else if (add_cnt1)beginif(end_cnt1)cnt1 <= 0;elsecnt1 <= cnt1 +1;endendassign add_cnt1 = end_cnt0;
assign end_cnt1 = add_cnt1 && cnt1 == 4-1;
数码管动态扫描
always@(posedge clk or negedge rst_n) //动态扫描
beginif(rst_n == 1'b0)seg_sel <= 4'b111_1;else if (cnt1 == 0)seg_sel <= 4'b111_0;else if (cnt1 == 1)seg_sel <= 4'b110_1;else if (cnt1 == 2)seg_sel <= 4'b101_1;else if (cnt1 == 3)seg_sel <= 4'b011_1;elseseg_sel <= 4'b111_1;end
数码管选择显示
reg [3:0] sel_data;always@(posedge clk or negedge rst_n) // 选择显示
beginif(rst_n == 0)seg_ment <=8'hc0;else if (sel_data==0)seg_ment <= 8'hc0;else if (sel_data==1)seg_ment <= 8'hf9;else if (sel_data==2)seg_ment <= 8'ha4;else if (sel_data==3)seg_ment <= 8'hb0;else if (sel_data==4)seg_ment <= 8'h99;else if (sel_data==5)seg_ment <= 8'h92;else if (sel_data==6)seg_ment <= 8'h82;else if (sel_data==7)seg_ment <= 8'hf8;else if (sel_data==8)seg_ment <= 8'h80;else if (sel_data==9)seg_ment <= 8'h90;elseseg_ment <= 8'hc0;
endalways@(*)
beginif (cnt1==0)sel_data <= m_g;else if (cnt1==1)sel_data <= m_s;else if (cnt1==2)sel_data <= s_g;elsesel_data <= s_s;end
分个位 分十位 时个位 时十位
reg [3:0] m_g;
wire add_m_g;
wire end_m_g;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
m_g <= 0;else if (add_m_g)beginif(end_m_g)m_g <= 0;elsem_g <= m_g +1;end
elsem_g <= m_g;endassign add_m_g = end_cnt2;
assign end_m_g = add_m_g && m_g == 10-1;reg [2:0] m_s;
wire add_m_s;
wire end_m_s;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
m_s <= 0;
else if (add_m_s)beginif(end_m_s)m_s <= 0;elsem_s <= m_s +1;end
endassign add_m_s = end_m_g;
assign end_m_s = add_m_s && m_s == 6-1;reg [3:0] s_g;
wire add_s_g;
wire end_s_g;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
s_g <= 0;
else if (add_s_g)
beginif(end_s_g)s_g <= 0;else if (key_in1 == 1'b0)//保证按键按下时位不产生变化s_g <= s_g ;elses_g <= s_g +1;endelses_g <= s_g;
endassign add_s_g = end_m_s;
assign end_s_g = add_s_g && s_g == x-1;reg [1:0] s_s;
wire add_s_s;
wire end_s_s;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
s_s <= 0;
else if (add_s_s)beginif(end_s_s)s_s <= 0;elses_s <= s_s +1;end
endassign add_s_s = end_s_g;
assign end_s_s = add_s_s && s_s == 3-1; always@(*)
beginif(s_s==2)
x=4;
else
x=10;end
上述基本可以达到数码管显示计数的效果
//按键更改频率
parameter TIME_1S = 5000_000_0;
parameter TIME_1MS = 5000_000;
parameter TIME_1NS = 5000_00;always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)y <= TIME_1S;else if ( key_in1 == 1'b0) //按键1改时钟频率,同时s_g数码管不变beginy=TIME_1MS;endelse if (key_in2 == 1'b0)//按键2 改时钟频率,改的更快y=TIME_1NS;elsebeginy <= TIME_1S;end
beep报时
//beep 计数
reg [24:0] cnt;
reg [2:0] cnt_500ms;
reg [17:0] freq_cnt;
reg [17:0] freq_data;
reg [17:0] freq_data2;
wire [16:0] duty_data1;
wire [16:0] duty_data2;// beep 0.5s的计数
always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)cnt <= 25'd0;else if (cnt == CNT_MAX)cnt <= 25'd0;elsecnt <= cnt + 25'b1;always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)cnt_500ms <= 3'd0;else if ((cnt_500ms == 3'd6)&&(cnt == CNT_MAX))cnt_500ms <= 3'd0;else if (cnt == CNT_MAX)cnt_500ms <= cnt_500ms + 3'd1;elsecnt_500ms <= cnt_500ms;//频率计数
always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)freq_cnt <= 18'd0;else if ((freq_cnt == freq_data)||(cnt == CNT_MAX))freq_cnt <= 18'd0;elsefreq_cnt <= freq_cnt + 18'd1;always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)freq_data <= DO;else case(cnt_500ms)3'd0:beginfreq_data <= DO;freq_data2<= XI;enddefault :beginfreq_data <= DO;freq_data2<= XI;endendcaseassign duty_data1 = freq_data >> 1;assign duty_data2 = freq_data2 >> 1;//报时always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)beep <= 1'b0;else if ((freq_cnt >= duty_data1)&&(((m_s == 5)&&(m_g== 2))||((m_s == 5)&&(m_g ==0))||((m_s == 5)&&(m_g ==4))||((m_s == 5)&&(m_g ==6))||((m_s == 5)&&(m_g ==8))))// 50 52 54 56 58 报时beep <= 1'b1;else if ((freq_cnt >= duty_data2)&&(((m_s == 0)&&(m_g== 0))))// 正点报时beep <= 1'b1;elsebeep <= 1'b0;
2.完整代码
module clock_k_b
(input clk,input rst_n,input wire key_in1,input wire key_in2,output reg [3:0] seg_sel,output reg [7:0] seg_ment,output reg beep);parameter TIME_1US = 500;
parameter TIME_1S = 5000_000_0;
parameter TIME_1MS = 5000_000;
parameter TIME_1NS = 5000_00;
parameter CNT_MAX =25'd24_999_999;
parameter DO = 18'd190839;
parameter XI = 18'd101213;//
reg [25:0] y;
reg [8:0] cnt0;
reg [3:0] x;
wire add_cnt0;
wire end_cnt0;//beep 计数
reg [24:0] cnt;
reg [2:0] cnt_500ms;
reg [17:0] freq_cnt;
reg [17:0] freq_data;
reg [17:0] freq_data2;
wire [16:0] duty_data1;
wire [16:0] duty_data2;// beep 0.5s的计数
always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)cnt <= 25'd0;else if (cnt == CNT_MAX)cnt <= 25'd0;elsecnt <= cnt + 25'b1;always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)cnt_500ms <= 3'd0;else if ((cnt_500ms == 3'd6)&&(cnt == CNT_MAX))cnt_500ms <= 3'd0;else if (cnt == CNT_MAX)cnt_500ms <= cnt_500ms + 3'd1;elsecnt_500ms <= cnt_500ms;//频率计数
always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)freq_cnt <= 18'd0;else if ((freq_cnt == freq_data)||(cnt == CNT_MAX))freq_cnt <= 18'd0;elsefreq_cnt <= freq_cnt + 18'd1;always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)freq_data <= DO;else case(cnt_500ms)3'd0:beginfreq_data <= DO;freq_data2<= XI;enddefault :beginfreq_data <= DO;freq_data2<= XI;endendcaseassign duty_data1 = freq_data >> 1;assign duty_data2 = freq_data2 >> 1;//报时always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)beep <= 1'b0;else if ((freq_cnt >= duty_data1)&&(((m_s == 5)&&(m_g== 2))||((m_s == 5)&&(m_g ==0))||((m_s == 5)&&(m_g ==4))||((m_s == 5)&&(m_g ==6))||((m_s == 5)&&(m_g ==8))))// 50 52 54 56 58 报时beep <= 1'b1;else if ((freq_cnt >= duty_data2)&&(((m_s == 0)&&(m_g== 0))))// 正点报时beep <= 1'b1;elsebeep <= 1'b0;
always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)y <= TIME_1S;else if ( key_in1 == 1'b0) //按键1改时钟频率,同时s_g数码管不变beginy=TIME_1MS;endelse if (key_in2 == 1'b0)//按键2 改时钟频率,改的更快y=TIME_1NS;elsebeginy <= TIME_1S;end/* always@(posedge clk or negedge rst_n)if(rst_n == 1'b0)begin//beep <= 1'b0;led <= 1'b1;endelse if (m_s>= 5)begin//beep <= 1'b1;led <= ~led;endelsebegin //beep <= 1'b0;led <= led;end */always@(posedge clk or negedge rst_n) //数码管显示if(rst_n == 0)cnt0 <= 0;else if (add_cnt0)beginif(end_cnt0 )cnt0 <= 0;elsecnt0 <= cnt0 +1;endassign add_cnt0 = 1;
assign end_cnt0 = add_cnt0 && cnt0== TIME_1US-1;reg [2:0] cnt1;
wire add_cnt1;
wire end_cnt1;always@(posedge clk or negedge rst_n)begin //4个数码管if(rst_n == 0)
cnt1 <= 0;
else if (add_cnt1)beginif(end_cnt1)cnt1 <= 0;elsecnt1 <= cnt1 +1;endendassign add_cnt1 = end_cnt0;
assign end_cnt1 = add_cnt1 && cnt1 == 4-1;reg [25:0] cnt2;
wire add_cnt2;
wire end_cnt2;
always@(posedge clk or negedge rst_n)begin //1s计数,可以通过按键更改if(rst_n == 0)
cnt2 <= 0;
else if (add_cnt2)beginif(end_cnt2)cnt2 <= 0;elsecnt2 <= cnt2 +1;end
endassign add_cnt2 = 1;
assign end_cnt2 = add_cnt2 && cnt2 == y-1;reg [3:0] sel_data;always@(posedge clk or negedge rst_n) // 选择显示
beginif(rst_n == 0)seg_ment <=8'hc0;else if (sel_data==0)seg_ment <= 8'hc0;else if (sel_data==1)seg_ment <= 8'hf9;else if (sel_data==2)seg_ment <= 8'ha4;else if (sel_data==3)seg_ment <= 8'hb0;else if (sel_data==4)seg_ment <= 8'h99;else if (sel_data==5)seg_ment <= 8'h92;else if (sel_data==6)seg_ment <= 8'h82;else if (sel_data==7)seg_ment <= 8'hf8;else if (sel_data==8)seg_ment <= 8'h80;else if (sel_data==9)seg_ment <= 8'h90;elseseg_ment <= 8'hc0;
endalways@(posedge clk or negedge rst_n) //动态扫描
beginif(rst_n == 1'b0)seg_sel <= 4'b111_1;else if (cnt1 == 0)seg_sel <= 4'b111_0;else if (cnt1 == 1)seg_sel <= 4'b110_1;else if (cnt1 == 2)seg_sel <= 4'b101_1;else if (cnt1 == 3)seg_sel <= 4'b011_1;elseseg_sel <= 4'b111_1;end reg [3:0] m_g;
wire add_m_g;
wire end_m_g;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
m_g <= 0;else if (add_m_g)beginif(end_m_g)m_g <= 0;elsem_g <= m_g +1;end
elsem_g <= m_g;endassign add_m_g = end_cnt2;
assign end_m_g = add_m_g && m_g == 10-1;reg [2:0] m_s;
wire add_m_s;
wire end_m_s;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
m_s <= 0;
else if (add_m_s)beginif(end_m_s)m_s <= 0;elsem_s <= m_s +1;end
endassign add_m_s = end_m_g;
assign end_m_s = add_m_s && m_s == 6-1;reg [3:0] s_g;
wire add_s_g;
wire end_s_g;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
s_g <= 0;
else if (add_s_g)
beginif(end_s_g)s_g <= 0;else if (key_in1 == 1'b0)s_g <= s_g ;elses_g <= s_g +1;endelses_g <= s_g;
endassign add_s_g = end_m_s;
assign end_s_g = add_s_g && s_g == x-1;reg [1:0] s_s;
wire add_s_s;
wire end_s_s;
always@(posedge clk or negedge rst_n)beginif(rst_n == 0)
s_s <= 0;
else if (add_s_s)beginif(end_s_s)s_s <= 0;elses_s <= s_s +1;end
endassign add_s_s = end_s_g;
assign end_s_s = add_s_s && s_s == 3-1; always@(*)
beginif(s_s==2)
x=4;
else
x=10;end/* always@(posedge clk or negedge rst_n)
beginif(rst_n == 1'b0)sel_data <= 0;else if (cnt1==0)sel_data <= m_g;else if (cnt1==1)sel_data <= m_s;else if (cnt1==2)sel_data <= s_g;else if (cnt1==3)sel_data <= s_s;end */always@(*)
beginif (cnt1==0)sel_data <= m_g;else if (cnt1==1)sel_data <= m_s;else if (cnt1==2)sel_data <= s_g;elsesel_data <= s_s;end endmodule
3.仿真代码
`timescale 1ns/1ns module tb_clock();parameter CYCLE = 20;reg clk;
reg rst_n;wire [3:0] seg_sel;
wire [6:0] seg_ment;clock
#(.TIME_1US (100),.TIME_1S (10)
)clock_inst
(.clk (clk),.rst_n (rst_n),.seg_sel (seg_sel),.seg_ment (seg_ment)
);initial begin clk = 0;forever#(CYCLE/2)begin clk=~clk;end endinitial begin#1rst_n = 0;#(10*CYCLE);rst_n = 1;endendmodule
总结
这是暑假自学搞得数字时钟的设计,虽然功能齐全,但是难免有点不完美的地方,也可以通过层次化的设计让代码变得没有这么长,可以通过这一份代码,要是期末课设弄不出来,参考一下也是可以的,免得挂了,功能反正都可以实现。若有更好的点子也可以一起交流学习一下。