Leetcode解数独
- 题目描述
- 题解1(按Board行列回溯:较直接)
题目描述
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字 1-9 在每一行只能出现一次
- 数字 1-9 在每一列只能出现一次
- 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
来源:力扣(LeetCode)题目链接
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
示例1
输入:
board = [["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],
["6","7","2","1","9","5","3","4","8"],[
"1","9","8","3","4","2","5","6","7"],
["8","5","9","7","6","1","4","2","3"],
["4","2","6","8","5","3","7","9","1"],
["7","1","3","9","2","4","8","5","6"],
["9","6","1","5","3","7","2","8","4"],
["2","8","7","4","1","9","6","3","5"],
["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
题解1(按Board行列回溯:较直接)
class Solution {
public:
// 为什么回溯有返回值:因为只需要做一次解,需要及时返回;没有返回值的一般是需要穷举所有的解bool backtrace(vector<vector<char>>& board, int i, int j){if(9 == i){ // 回溯结束条件:以行为准return true;}else if(9 == j){return backtrace(board, i+1, 0); // i行结束,换行+1}else if('.' != board[i][j]){return backtrace(board, i, j+1); // 此处有数字了,换列}// 处理节点else{for(char c = '1'; c <= '9'; c++){ // 回溯枚举if(isvaild(board, i, j, c)){board[i][j] = c;if(backtrace(board, i, j+1))return true; // 完成了一种解,剪枝board[i][j] = '.'; // 还没填完所有的空,回退}}}return false;}void solveSudoku(vector<vector<char>>& board) {backtrace(board, 0, 0);}bool isvaild(vector<vector<char>>& board, int i, int j, char c){for(int k=0; k<9; k++){// 同行if(c == board[i][k])return false;// 同列if(c == board[k][j])return false;// subboard:行/3 列/3 是找组别信息// 规律可循:一个subboard里,行列变化不同,行变一次,列变3次:// 所以一个除法,一个取余if(c == board[(i/3)*3+k/3][(j/3)*3+k%3])return false;}return true;}
};