人工智能中(Pytorch)框架下模型训练效果的提升方法

news/2024/12/1 5:02:53/

大家好,我是微学AI,今天给大家介绍一下人工智能中(Pytorch)框架下模型训练效果的提升方法。随着深度学习技术的快速发展,越来越多的应用场景需要建立复杂的、高精度的深度学习模型。为了实现这些目标,必须采用一系列复杂的技术来提高训练效果。

一、为什么要研究模型训练效果的提升方法

在过去,训练一个深度神经网络往往需要大量的时间和计算资源,而且结果也可能不如人意。但是随着新的技术被引入,训练深度学习模型的效率和准确度都得到了极大的提升。

例如,学习率调整法动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。Batch Normalization技术能够使神经网络中的每一层都具有相似的分布,从而加速收敛和提高训练准确性;Dropout 技术可以防止过拟合,从而提高模型的泛化能力;数据增强技术可以增加训练样本数量并提高模型的泛化性能;迁移学习可以通过利用已有的模型或预训练的模型来解决新问题,从而节省训练时间并更快地达到较高的准确性。

同时,随着深度学习应用的广泛普及和深度学习模型的复杂化,提高训练效果的重要性也越来越凸显。训练效果好的模型可以更准确地预测未知数据,更好地满足实际应用需求。因此,应用复杂技术来提高训练效果已成为深度学习领域的研究热点,同时也是实现深度学习应用的必要手段。

二、模型训练效果的提升方法具体案例

在训练深度学习模型过程中,复杂技术可以应用于提高训练效果,下面我将举几个案例:学习率调整、批量归一化、权重正则化、梯度剪裁。

1. 学习率调整

动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。以PyTorch框架为例

import torch
import torch.optim as optim
from torchvision import datasets, transforms# 数据加载
train_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)# 训练
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()optimizer.step()# 调整学习率scheduler.step()

 2. 批量归一化(Batch Normalization)

在每一层之间添加一个 batch normalization 层,将输入进行标准化(归一化)处理,有助于加速训练速度。

import torch# 定义模型并添加批量归一化层,这里以两层线性层为例
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.BatchNorm1d(1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)

3. 权重正则化

常见的有 L1 和 L2 正则化,帮助限制模型参数的范数(和 LASSO/Ridge 最小二乘回归类似)。可以有效限制模型复杂度,以减小过拟合的风险。


import torch.optim as optim
from torch.utils.data import Dataset, DataLoader# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)# 模型的参数
parameters = model.parameters()# 设置优化器并添加L2正则化
optimizer = optim.SGD(parameters, lr=0.001, weight_decay=1e-5)

4. 梯度剪裁

在训练过程中,梯度可能会变得很大,这可能导致梯度爆炸的问题。梯度剪裁可以避免梯度过大。

import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transformstrain_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = optim.SGD(model.parameters(), lr=0.001)# 训练循环
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()# 梯度剪裁torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)optimizer.step()

我举了以上神经网络训练过程中一些运用技巧,可以应用在模型训练过程中提高训练效果。更多内容希望大家持续关注。


http://www.ppmy.cn/news/52287.html

相关文章

回顾 | Pre VS Code Day - 用 GitHub Codespaces 构建 OpenAI 应用实战

编辑:Alan Wang 排版:Rani Sun 微软 Reactor 为帮助广开发者,技术爱好者,更好的学习 .NET Core, C#, Python,数据科学,机器学习,AI,区块链, IoT 等技术,将每周三到周六&a…

如何雇佣一名全民开发者?

注:全民开发的英文是Citizen Development,由咨询公司Gartner在2010年提出的概念,指非专业开发人员使用低代码或无代码平台创建应用程序,无需IT部门的支持,旨在提高生产力并降低开发成本。 国内普遍将Citizen Developme…

Sqoop 从入门到精通

Sqoop Sqoop 架构解析 概述 Sqoop是Hadoop和关系数据库服务器之间传送数据的一种工具。它是用来从关系数据库如:MySQL,Oracle到Hadoop的HDFS,并从Hadoop的文件系统导出数据到关系数据库。 传统的应用管理系统,也就是与关系型数…

干货 | 被抑郁情绪所困扰?来了解CBT吧!

Hello,大家好! 这里是 壹脑云科研圈 ,我是 喵君姐姐~ 我们的情绪就像是一组正弦波,有情绪很高涨的时刻,也会有情绪低落的瞬间,也会有情绪平稳的时候。 这种情绪上的变化非常正常,也正是因为这…

【音视频第20天】wireshark+tcpdump

tcpdump抓 wireshark分析 目录 tcpdumpwireshark tcpdump tcpdump参数详解 网上一搜一大堆。最全的不是用tcpdump -h而是man tcpdump来查询手册。 tcpdump -i eth0 -p udp -xx -Xs 0 -w /root/test2.cap -i 针对eth0网卡的,ifconfig是查看有几个网卡 -i eth0 表示…

UE5实现建筑剖切效果

文章目录 1.实现目标2.实现过程2.1 材质参数集2.2 材质遮罩函数2.3 更新Box3.参考资料1.实现目标 基于BoxMask材质节点,在UE5中实现建筑物的剖切效果,GIF动图如下: 2.实现过程 实现原理与之前“BoxMask实现建筑生长效果”的原理相同,都是基于BoxMask材质节点实现。 具体实…

第13届蓝桥杯国赛真题剖析-2022年5月29日Scratch编程初中级组

[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第127讲。 第13届蓝桥杯Scratch国赛真题,这是2022年5月29日举办的全国总决赛,比赛仍然采取线上…

计算机视觉 | 八斗人工智能 (中)

目录 卷积&滤波1.一个没有任何效果的卷积核2.平均均值滤波3.图像锐化4.soble边缘检测 卷积的三种填充模式1.padding --> same模式 最常用的模式2.full和valid模式三通道卷积 canny边缘检测算法(效果最好)Sobel算子、Prewitt算子 相机模型畸变矫正…