Android实现红绿灯检测(含Android源码 可实时运行)

news/2024/11/15 4:17:25/

Android实现红绿灯检测(含Android源码 可实时运行)

目录

Android实现红绿灯检测(含Android源码 可实时运行)

1. 前言

2. 红绿灯检测数据集说明

3. 基于YOLOv5的红绿灯检测模型训练

4.红绿灯检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) 一些异常错误解决方法

5. 红绿灯检测效果

6.项目源码下载


1. 前言

本篇博客是《深度学习目标检测:YOLOv5实现红绿灯检测(含红绿灯数据集+训练代码)》续作Android篇,主要分享将Python训练后的YOLOv5的红绿灯检测模型移植到Android平台。我们将开发一个简易的、可实时运行的红绿灯检测Android Demo。

考虑到原始YOLOv5的模型计算量比较大,鄙人在YOLOv5s基础上,开发了一个非常轻量级的的红绿灯检测模型yolov5s05_320。从效果来看,Android红绿灯检测模型的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5=0.93919,而轻量化版本yolov5s05_416平均精度平均值mAP_0.5=0.71944左右。APP在普通Android手机上可以达到实时的检测识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

 先展示一下Android Demo效果:

【Android APP体验】Android实现红绿灯检测APP(可实时运行))

【项目源码下载】 Android实现红绿灯检测(含Android源码 可实时运行)

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/128240334


2. 红绿灯检测数据集说明

目前收集了约1W+的红绿灯(交通信号灯)检测数据集:Traffic-Lights-Dataset-Domestic+Traffic-Lights-Dataset-Foreign: 

关于红绿灯检测数据集使用说明和下载,详见另一篇博客说明:《红绿灯(交通信号灯)检测数据集》


3. 基于YOLOv5的红绿灯检测模型训练

官方YOLOv5给出了YOLOv5l,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的channels通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为yolov5s05。从性能来看,yolov5s05比yolov5s快5多倍,而mAP下降了16%(0.93→0.77),对于手机端,这精度勉强可以接受。

下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPsmAP0.5
yolov5s640×6407.216.50.93919
yolov5s05416×4161.71.80.77174
yolov5s05320×3201.71.10.71944

yolov5s05和yolov5s训练过程完全一直,仅仅是配置文件不一样而已;碍于篇幅,本篇博客不在赘述,详细训练过程请参考: 《深度学习目标检测:YOLOv5实现红绿灯检测(含红绿灯数据集+训练代码)》


4.红绿灯检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

训练好yolov5s05或者yolov5s模型后,你需要将模型转换为ONNX模型,并使用onnx-simplifier简化网络结构

# 转换yolov5s05模型
python export.py --weights "runs/yolov5s05_320/weights/best.pt" --img-size 320 320# 转换yolov5s模型
python export.py --weights "runs/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署:

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

(3) Android端上部署模型

项目实现了Android版本的红绿灯检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。Android源码核心算法YOLOv5部分均采用C++实现,上层通过JNI接口调用

package com.cv.tnn.model;import android.graphics.Bitmap;public class Detector {static {System.loadLibrary("tnn_wrapper");}/**** 初始化模型* @param model: TNN *.tnnmodel文件文件名(含后缀名)* @param root:模型文件的根目录,放在assets文件夹下* @param model_type:模型类型* @param num_thread:开启线程数* @param useGPU:关键点的置信度,小于值的坐标会置-1*/public static native void init(String model, String root, int model_type, int num_thread, boolean useGPU);/**** 检测* @param bitmap 图像(bitmap),ARGB_8888格式* @param score_thresh:置信度阈值* @param iou_thresh:  IOU阈值* @return*/public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh);
}

如果你想在这个Android Demo部署你自己训练的YOLOv5模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。

(4) 一些异常错误解决方法

  • TNN推理时出现:Permute param got wrong size

官方YOLOv5:  GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite 

如果你是直接使用官方YOLOv5代码转换TNN模型,部署TNN时会出现这个错误Permute param got wrong size,这是因为TNN最多支持4个维度计算,而YOLOv5在输出时采用了5个维度。你需要修改model/yolo.py文件 

 export.py文件设置model.model[-1].export = True:

.....# Exportsif 'torchscript' in include:export_torchscript(model, img, file, optimize)if 'onnx' in include:model.model[-1].export = True  # TNN不支持5个维度,修改输出格式export_onnx(model, img, file, opset, train, dynamic, simplify=simplify)if 'coreml' in include:export_coreml(model, img, file)# Finishprint(f'\nExport complete ({time.time() - t:.2f}s)'f"\nResults saved to {colorstr('bold', file.parent.resolve())}"f'\nVisualize with https://netron.app').....
  • TNN推理时效果很差,检测框一团麻

 这个问题,大部分是模型参数设置错误,需要根据自己的模型,修改C++推理代码YOLOv5Param模型参数。


struct YOLOv5Param {ModelType model_type;                  // 模型类型,MODEL_TYPE_TNN,MODEL_TYPE_NCNN等int input_width;                       // 模型输入宽度,单位:像素int input_height;                      // 模型输入高度,单位:像素bool use_rgb;                          // 是否使用RGB作为模型输入(PS:接口固定输入BGR,use_rgb=ture时,预处理将BGR转换为RGB)bool padding;int num_landmarks;                     // 关键点个数NetNodes InputNodes;                   // 输入节点名称NetNodes OutputNodes;                  // 输出节点名称vector<YOLOAnchor> anchors;vector<string> class_names;            // 类别集合
};

input_width和input_height是模型的输入大小;vector<YOLOAnchor> anchors需要对应上,注意Python版本的yolov5s的原始anchor是

anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32

而yolov5s05由于input size由原来640变成320,anchor也需要做对应调整:

anchors:- [ 1,3, 2,5, 3,7 ]- [ 4,9, 9,5, 5,12 ]- [ 7,17, 9,25, 17,38 ]

因此C++版本的yolov5s和yolov5s05的模型参数YOLOv5Param如下设置

//YOLOv5s模型参数
static YOLOv5Param YOLOv5s_640 = {MODEL_TYPE_TNN,640,640,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32, {{12, 32}, {17, 47}, {35, 76}}},{"415", 16, {{6, 17}, {18, 8}, {9, 22}}},{"output", 8, {{2, 6}, {3, 9}, {5, 12}}},},CLASS_NAME
};//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_416 = {MODEL_TYPE_TNN,416,416,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32, {{7, 18}, {10, 27}, {18, 45}}},{"415", 16, {{4, 11}, {5, 13}, {12, 6}}},{"output", 8, {{2, 4}, {2, 6}, {3, 8}}}, //},CLASS_NAME
};
//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_320 = {MODEL_TYPE_TNN,320,320,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32, {{7, 17}, {9, 25}, {17, 38}}},{"415", 16, {{4, 9}, {9, 5}, {5, 12}}},{"output", 8, {{1, 3}, {2, 5}, {3, 7}}}, //},CLASS_NAME
};
  • 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:解决dlopen failed: library “libomp.so“ not found_PKing666666的博客-CSDN博客_dlopen failed


5. 红绿灯检测效果

【Android APP体验】Android实现红绿灯检测APP(可实时运行))

APP在普通Android手机上可以达到实时的红绿灯检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

​​​​​​​

6.项目源码下载

 【Android APP体验】Android实现红绿灯检测APP(可实时运行))

 【红绿灯检测Android源码下载】 Android实现红绿灯检测(含Android源码 可实时运行)

整套Android项目源码内容包含:

  1. 提供快速版yolov5s05红绿灯检测模型,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右
  2. 提供高精度版本yolov5s红绿灯检测模型,CPU(4线程)约250ms左右,GPU约100ms左右
  3. Demo支持图片,视频,摄像头测试

如果你需要红绿灯检测数据集:《红绿灯(交通信号灯)检测数据集》

如果你需要红绿灯训练代码:《YOLOv5实现红绿灯检测(含红绿灯数据集+训练代码)》


http://www.ppmy.cn/news/5202.html

相关文章

可解释机器学习笔记合集

​task01 导论 【学习打卡01】可解释机器学习之导论Task01 预备知识学习 ​task02 ZFNet 【学习打卡】ZFNet深度学习图像分类算法【学习打卡02】可解释机器学习笔记之ZFNet【算法】可解释机器学习-ZFNet&#xff08;Datawhale)Task02 【算法】ZFNet ​task03 CAM 【学习打…

Nginx-反向代理

什么是反向代理 用户直接访问反向代理服务器就可以获得目标服务器的资源。这一过程叫反向代理 如何配置反向代理 修改nginx配置文件 1.切换到nginx的conf路径下操作nginx的配置文件 cd /usr/local/openresty/nginx/conf 1.1防止修改错误可以先备份一下配置文件 cp nginx.…

“专利费用减缓”怎么申请?

在专利申请时&#xff0c;很多申请人对“专利费用减缓”的概念并不了解&#xff0c;或者不太清楚。甚至有很多申请人一听到专利申请可以请求费用减缓&#xff0c;就以为申请专利是不要钱的。当然&#xff0c;这样的理解就存在了很大的偏差了&#xff0c;所以&#xff0c;我们今…

NNDL 2022秋

第一届AI专业&#xff0c;很多课程都是第一次开课&#xff0c;老师和学生都在“摸着石头过河”。 好处是所学内容比较新&#xff0c;跟得上“潮流”&#xff0c;学习意愿比较强。 难处是教学资料相对欠缺&#xff0c;需要学的内容较多&#xff0c;难度较大。 大家经过一学期…

Java多线程-线程的创建(Thread类的基本使用)

文章目录一. 线程和Thread类1. 线程和Thread类1.1 Thread类的构造方法1.2 启用线程的相关方法2. 创建第一个Java多线程程序3. 使用Runnable对象创建线程4. 使用内部类创建线程5. 使用Lambada表达式创建线程6. 多线程并发执行简单演示7. 多线程并发执行的优势二. Thread类的属性…

Html5 canvas创意特效合集

Canvas就像一块画布&#xff0c;我们可以通过调用脚本在Canvas上绘制任意形状&#xff0c;甚至是制作动画。本文就是收集了很多非常富有创意的一些canvas动画特效例子&#xff0c;这些例子都非常适合大家学习。 1.3D篝火动画特效 这款篝火特效是基于 three.js 和 canvas 制作的…

【如何获取文本框的输入内容 Objective-C语言】

一、如何获取文本框的输入内容 1.要想拿到文本框的输入内容,就还得拖,怎么拖呢 你需要用几个属性,和这两个文本框的输入内容相关联 然后,接下来,你在这个ViewController类中,只要访问这几个属性,就相当于是访问界面上的控件 然后访问界面上的控件,是不是就能拿到控…

【二叉树经典习题讲解】

If you find a path with no obstacles, probably doesnt lead anywhere. 目录 1 前中后序遍历一颗二叉树 2 总的结点个数 3 求叶子节点个数 4 求树的高度 5 第k层结点个数 6 二叉树的层序遍历 7 判断一棵树是否为完全二叉树 1 二叉树的前序遍历 2 单值二叉树 3 翻转二…