数据结构(数组、链表、栈、队列、树)

news/2024/10/17 14:14:37/

文章目录

    • 1.数组
      • 1.1数组的特点
      • 1.2自定义数组
    • 2.链表
      • 2.1链表的特点
      • 2.2自定义链表
        • 2.2.1自定义单向链表
        • 2.2.2自定义双向链表
    • 3.栈
      • 3.1栈的特点
      • 3.2 Stack使用举例
      • 3.3 自定义栈
    • 4. 队列
    • 5. 树与二叉树
      • 5.1 树的理解
      • 5.2 二叉树的基本概念
      • 5.3 二叉树的遍历
      • 5.4 经典二叉树和红黑树
      • 5.5 二叉树及其结点的表示

1.数组

1.1数组的特点

在Java中,数组是用来存放同一种数据类型的集合,并且只能存放同一种数据类型。

//只声明了类型和长度
数据类型[]  数组名称 = new 数据类型[数组长度];//声明了类型,初始化赋值,大小由元素个数决定
数据类型[] 数组名称 = {数组元素1,数组元素2......}

例如:整型数组

在这里插入图片描述

例如:对象数组

在这里插入图片描述

  • 物理结构特点:
    • 申请内存:一次申请一大段连续的空间,一旦申请到了,内存就固定了。
    • 不能动态扩展(初始化给大了,浪费;给小了,不够用),插入快,删除和查找慢。
    • 存储特点:所有数据存储在这个连续的空间中,数组中的每一个元素都是一个具体的数据(或对象),所有数据都紧密排布,不能有间隔。
  • 如下图:
    在这里插入图片描述

1.2自定义数组

class Array {private Object[] elementData;private int size;public Array(int capacity){elementData = new Object[capacity];}/*** 添加元素* @param value*/public void add(Object value){if(size >= elementData.length){throw new RuntimeException("数组已满,不可添加");}elementData[size] = value;size++;}/*** 查询元素value在数组中的索引位置* @param value* @return*/public int find(Object value){for (int i = 0; i < size; i++) {if(elementData[i].equals(value)){return i;}}return -1;}/*** 从当前数组中移除首次出现的value元素* @param value* @return*/public boolean delete(Object value){int index = find(value);if(index == -1){return false;}for(int i = index;i < size - 1;i++){elementData[i] = elementData[i + 1];}elementData[size - 1] = null;size--;return true;}/*** 将数组中首次出现的oldValue替换为newValue* @param oldValue* @param newValue* @return*/public boolean update(Object oldValue,Object newValue){int index = find(oldValue);if(index == -1){return false;}elementData[index] = newValue;return true;}/*** 遍历数组中所有数据*/public void print(){System.out.print("{");for (int i = 0; i < size; i++) {if(i == size - 1){System.out.println(elementData[i] + "}");break;}System.out.print(elementData[i] + ",");}}
}//测试类
public class ArrayTest {public static void main(String[] args) {Array arr = new Array(10);arr.add(123);arr.add("AA");arr.add(345);arr.add(345);arr.add("BB");arr.delete(345);arr.update(345,444);arr.print();}
}

2.链表

2.1链表的特点

  • 逻辑结构:线性结构
  • 物理结构:不要求连续的存储空间
  • 存储特点:链表由一系列结点node(链表中每一个元素称为结点)组成,结点可以在代码执行过程中动态创建。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

在这里插入图片描述

  • 常见的链表结构有如下的形式:

在这里插入图片描述

在这里插入图片描述

2.2自定义链表

2.2.1自定义单向链表

在这里插入图片描述

/*
单链表中的节点。
节点是单向链表中基本的单元。
每一个节点Node都有两个属性:一个属性:是存储的数据。另一个属性:是下一个节点的内存地址。*/
public class Node {// 存储的数据Object data;// 下一个节点的内存地址Node next;public Node(){}public Node(Object data, Node next){this.data = data;this.next = next;}
}
/*
链表类(单向链表)*/
public class Link<E> {// 头节点Node header;private int size = 0;public int size(){return size;}// 向链表中添加元素的方法(向末尾添加)public void add(E data){//public void add(Object data){// 创建一个新的节点对象// 让之前单链表的末尾节点next指向新节点对象。// 有可能这个元素是第一个,也可能是第二个,也可能是第三个。if(header == null){// 说明还没有节点。// new一个新的节点对象,作为头节点对象。// 这个时候的头节点既是一个头节点,又是一个末尾节点。header = new Node(data, null);}else {// 说明头不是空!// 头节点已经存在了!// 找出当前末尾节点,让当前末尾节点的next是新节点。Node currentLastNode = findLast(header);currentLastNode.next = new Node(data, null);}size++;}/*** 专门查找末尾节点的方法。*/private Node findLast(Node node) {if(node.next == null) {// 如果一个节点的next是null// 说明这个节点就是末尾节点。return node;}// 程序能够到这里说明:node不是末尾节点。return findLast(node.next); // 递归算法!}/*// 删除链表中某个数据的方法public void remove(Object obj){//略}// 修改链表中某个数据的方法public void modify(Object newObj){//略}// 查找链表中某个元素的方法。public int find(Object obj){//略}*/
}

2.2.2自定义双向链表

在这里插入图片描述

/*
双向链表中的节点。*/
public class Node<E> {Node prev;E data;Node next;Node(Node prev, E data, Node next) {this.prev = prev;this.data = data;this.next = next;}
}
/*** 链表类(双向链表)* @author 尚硅谷-宋红康* @create 15:05*/
public class MyLinkedList<E> implements Iterable<E>{private Node first;  //链表的首元素private Node last;   //链表的尾元素private int total;public void add(E e){Node newNode = new Node(last, e, null);if(first == null){first = newNode;}else{last.next = newNode;}last = newNode;total++;}public int size(){return total;}public void delete(Object obj){Node find = findNode(obj);if(find != null){if(find.prev != null){find.prev.next = find.next;}else{first = find.next;}if(find.next != null){find.next.prev = find.prev;}else{last = find.prev;}find.prev = null;find.next = null;find.data = null;total--;}}private Node findNode(Object obj){Node node = first;Node find = null;if(obj == null){while(node != null){if(node.data == null){find = node;break;}node = node.next;}}else{while(node != null){if(obj.equals(node.data)){find = node;break;}node = node.next;}}return find;}public boolean contains(Object obj){return findNode(obj) != null;}public void update(E old, E value){Node find = findNode(old);if(find != null){find.data = value;}}@Overridepublic Iterator<E> iterator() {return new Itr();}private class Itr implements Iterator<E>{private Node<E> node = first;@Overridepublic boolean hasNext() {return node!=null;}@Overridepublic E next() {E value = node.data;node = node.next;return value;}}
}

自定义双链表测试:

public class MyLinkedListTest {public static void main(String[] args) {MyLinkedList<String> my = new MyLinkedList<>();my.add("hello");my.add("world");my.add(null);my.add(null);my.add("java");my.add("java");my.add("xiaoyang");System.out.println("一共有:" + my.size());System.out.println("所有元素:");for (String s : my) {System.out.println(s);}System.out.println("-------------------------------------");System.out.println("查找java,null,haha的结果:");System.out.println(my.contains("java"));System.out.println(my.contains(null));System.out.println(my.contains("haha"));System.out.println("-------------------------------------");System.out.println("替换java,null后:");my.update("java","JAVA");my.update(null,"songhk");System.out.println("所有元素:");for (String s : my) {System.out.println(s);}System.out.println("-------------------------------------");System.out.println("删除hello,JAVA,null,xiaoyang后:");my.delete("hello");my.delete("JAVA");my.delete(null);my.delete("xiaoyang");System.out.println("所有元素:");for (String s : my) {System.out.println(s);}}
}

3.栈

3.1栈的特点

  • 栈(Stack)又称为堆栈或堆叠,是限制仅在表的一端进行插入和删除运算的线性表。
  • 栈按照先进后出(FILO,first in last out)的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶。每次删除(退栈)的总是删除当前栈中最后插入(进栈)的元素,而最先插入的是被放在栈的底部,要到最后才能删除。
  • 核心类库中的栈结构有StackLinkedList
    • Stack就是顺序栈,它是Vector的子类。
    • LinkedList是链式栈。
  • 体现栈结构的操作方法:
    • peek()方法:查看栈顶元素,不弹出
    • pop()方法:弹出栈
    • push(E e)方法:压入栈
  • 时间复杂度:
    • 索引: O(n)
    • 搜索: O(n)
    • 插入: O(1)
    • 移除: O(1)
  • 如图所示:

在这里插入图片描述

在这里插入图片描述

3.2 Stack使用举例

public class TestStack {/** 测试Stack* */@Testpublic void test1(){Stack<Integer> list = new Stack<>();list.push(1);list.push(2);list.push(3);System.out.println("list = " + list);System.out.println("list.peek()=" + list.peek());System.out.println("list.peek()=" + list.peek());System.out.println("list.peek()=" + list.peek());
/*System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/while(!list.empty()){System.out.println("list.pop() =" + list.pop());}}/** 测试LinkedList* */@Testpublic void test2(){LinkedList<Integer> list = new LinkedList<>();list.push(1);list.push(2);list.push(3);System.out.println("list = " + list);System.out.println("list.peek()=" + list.peek());System.out.println("list.peek()=" + list.peek());System.out.println("list.peek()=" + list.peek());/*System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());System.out.println("list.pop() =" + list.pop());//java.util.NoSuchElementException
*/while(!list.isEmpty()){System.out.println("list.pop() =" + list.pop());}}
}

3.3 自定义栈

public class MyStack {// 向栈当中存储元素,我们这里使用一维数组模拟。存到栈中,就表示存储到数组中。// 为什么选择Object类型数组?因为这个栈可以存储java中的任何引用类型的数据private Object[] elements;// 栈帧,永远指向栈顶部元素// 那么这个默认初始值应该是多少。注意:最初的栈是空的,一个元素都没有。//private int index = 0; // 如果index采用0,表示栈帧指向了顶部元素的上方。//private int index = -1; // 如果index采用-1,表示栈帧指向了顶部元素。private int index;/*** 无参数构造方法。默认初始化栈容量10.*/public MyStack() {// 一维数组动态初始化// 默认初始化容量是10.this.elements = new Object[10];// 给index初始化this.index = -1;}/*** 压栈的方法* @param obj 被压入的元素*/public void push(Object obj) throws Exception {if(index >= elements.length - 1){//方式1://System.out.println("压栈失败,栈已满!");//return;//方式2:throw new Exception("压栈失败,栈已满!");}// 程序能够走到这里,说明栈没满// 向栈中加1个元素,栈帧向上移动一个位置。index++;elements[index] = obj;System.out.println("压栈" + obj + "元素成功,栈帧指向" + index);}/*** 弹栈的方法,从数组中往外取元素。每取出一个元素,栈帧向下移动一位。* @return*/public Object pop() throws Exception {if (index < 0) {//方式1://System.out.println("弹栈失败,栈已空!");//return;//方式2:throw new Exception("弹栈失败,栈已空!");}// 程序能够执行到此处说明栈没有空。Object obj = elements[index];System.out.print("弹栈" + obj + "元素成功,");elements[index] = null;// 栈帧向下移动一位。index--;return obj;}// set和get也许用不上,但是你必须写上,这是规矩。你使用IDEA生成就行了。// 封装:第一步:属性私有化,第二步:对外提供set和get方法。public Object[] getElements() {return elements;}public void setElements(Object[] elements) {this.elements = elements;}public int getIndex() {return index;}public void setIndex(int index) {this.index = index;}
}

4. 队列

  • 队列(Queue)是只允许在一端进行插入,而在另一端进行删除的运算受限的线性表。
  • 队列是逻辑结构,其物理结构可以是数组,也可以是链表。
  • 队列的修改原则:队列的修改是依先进先出(FIFO)的原则进行的。新来的成员总是加入队尾(即不允许"加塞"),每次离开的成员总是队列头上的(不允许中途离队),即当前"最老的"成员离队。
  • 图示:

在这里插入图片描述

在这里插入图片描述

5. 树与二叉树

5.1 树的理解

在这里插入图片描述

名词解释:

  • 结点:树中的数据元素都称之为结点
  • 根节点:最上面的结点称之为根,一颗树只有一个根且由根发展而来,从另外一个角度来说,每个结点都可以认为是其子树的根
  • 父节点:结点的上层结点,如图中,结点K的父节点是E、结点L的父节点是G
  • 子节点:节点的下层结点,如图中,节点E的子节点是K节点、节点G的子节点是L节点
  • 兄弟节点:具有相同父节点的结点称为兄弟节点,图中F、G、H互为兄弟节点
  • 结点的度数:每个结点所拥有的子树的个数称之为结点的度,如结点B的度为3
  • 树叶:度数为0的结点,也叫作终端结点,图中D、K、F、L、H、I、J都是树叶
  • 非终端节点(或分支节点):树叶以外的节点,或度数不为0的节点。图中根、A、B、C、E、G都是
  • 树的深度(或高度):树中结点的最大层次数,图中树的深度为4
  • 结点的层数:从根节点到树中某结点所经路径上的分支树称为该结点的层数,根节点的层数规定为1,其余结点的层数等于其父亲结点的层数+1
  • 同代:在同一棵树中具有相同层数的节点

5.2 二叉树的基本概念

二叉树(Binary tree)是树形结构的一个重要类型。二叉树特点是每个结点最多只能有两棵子树,且有左右之分。许多实际问题抽象出来的数据结构往往是二叉树形式,二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。

在这里插入图片描述

5.3 二叉树的遍历

  • 前序遍历:中左右(根左右)
    即先访问根结点,再前序遍历左子树,最后再前序遍历右子 树。前序遍历运算访问二叉树各结点是以根、左、右的顺序进行访问的。
  • 中序遍历:左中右(左根右)
    即先中前序遍历左子树,然后再访问根结点,最后再中序遍 历右子树。中序遍历运算访问二叉树各结点是以左、根、右的顺序进行访问的。
  • 后序遍历:左右中(左右根)
    即先后序遍历左子树,然后再后序遍历右子树,最后访问根 结点。后序遍历运算访问二叉树各结点是以左、右、根的顺序进行访问的。

在这里插入图片描述

前序遍历:ABDHIECFG
中序遍历:HDIBEAFCG
后序遍历:HIDEBFGCA

5.4 经典二叉树和红黑树

在这里插入图片描述

1、满二叉树: 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。 第n层的结点数是2的n-1次方,总的结点个数是2的n次方-1

在这里插入图片描述

2、完全二叉树: 叶结点只能出现在最底层的两层,且最底层叶结点均处于次底层叶结点的左侧。

在这里插入图片描述

3、二叉排序/查找/搜索树:即为BST (binary search/sort tree)。满足如下性质:
(1)若它的左子树不为空,则左子树上所有结点的值均小于它的根节点的值;
(2)若它的右子树上所有结点的值均大于它的根节点的值;
(3)它的左、右子树也分别为二叉排序/查找/搜索树。

在这里插入图片描述

对二叉查找树进行中序遍历,得到有序集合。便于检索。

4、平衡二叉树:(Self-balancing binary search tree,AVL)首先是二叉排序树,此外具有以下性质:
(1)它是一棵空树或它的左右两个子树的高度差的绝对值不超过1
(2)并且左右两个子树也都是一棵平衡二叉树
(3)不要求非叶节点都有两个子结点

平衡二叉树的目的是为了减少二叉查找树的层次,提高查找速度。平衡二叉树的常用实现有红黑树、AVL、替罪羊树、Treap、伸展树等。

在这里插入图片描述

5、红黑树:即Red-Black Tree。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,它是在 1972 年由 Rudolf Bayer 发明的。红黑树是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在 O(log n)时间内做查找,插入和删除, 这里的 n 是树中元素的数目。

红黑树的特性:

  • 每个节点是红色或者黑色
  • 根节点是黑色
  • 每个叶子节点(NIL)是黑色。(注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点)
  • 每个红色节点的两个子节点都是黑色的。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
  • 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点(确保没有一条路径会比其他路径长出2倍)

在这里插入图片描述

当插入或删除节点时,可能会破坏已有的红黑树,使得它不满足以上5个要求,那么此时就需要进行处理,使得它继续满足以上的5个要求:

1、recolor :将某个节点变红或变黑
2、rotation :将红黑树某些结点分支进行旋转(左旋或右旋)
在这里插入图片描述

红黑树可以通过红色节点和黑色节点尽可能的保证二叉树的平衡。主要是用它来存储有序的数据,它的时间复杂度是O(logN),效率非常之高。

5.5 二叉树及其结点的表示

普通二叉树:

public class BinaryTree<E>{private TreeNode root; //二叉树的根结点private int total;//结点总个数private class TreeNode{//至少有以下几个部分TreeNode parent;TreeNode left;E data;TreeNode right;public TreeNode(TreeNode parent, TreeNode left, E data, TreeNode right) {this.parent = parent;this.left = left;this.data = data;this.right = right;}}
}

TreeMap红黑树:

public class TreeMap<K,V> {private transient Entry<K,V> root;private transient int size = 0;static final class Entry<K,V> implements Map.Entry<K,V> {K key;V value;Entry<K,V> left;Entry<K,V> right;Entry<K,V> parent;boolean color = BLACK;/*** Make a new cell with given key, value, and parent, and with* {@code null} child links, and BLACK color.*/Entry(K key, V value, Entry<K,V> parent) {this.key = key;this.value = value;this.parent = parent;}}
}

http://www.ppmy.cn/news/51173.html

相关文章

SEO机制算是让我玩明白了

获取当前时间时间戳&#xff0c;返回遵循ISO 8601扩展格式的日期 new Date(Date.now()).toISOString() 使用moment库转换回来 this.moment(new Date(Date.now()).toISOString()).format("YYYY-MM-DD") js去掉富文本中html标签和图片 filterHtmlTag(val) {if(!val){…

苦中作乐 ---竞赛刷题31-40(15-20)

&#xff08;一&#xff09;目录 L1-032 Left-pad L1-033 出生年 L1-034 点赞 L1-035 情人节 L1-039 古风排版 &#xff08;二&#xff09;题目 L1-032 Left-pad 根据新浪微博上的消息&#xff0c;有一位开发者不满NPM&#xff08;Node Package Manager&#xff09;的做法…

C语言函数大全-- q 开头的函数

C语言函数大全 本篇介绍C语言函数大全-- q 开头的函数 1. qsort 1.1 函数说明 函数声明函数功能void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));用于将指定数组按指定顺序进行排序 参数&#xff1a; base &#xff1a; 指…

马斯克爆料Twitter裁了八成员工;OpenAI CEO:GPT-5根本不存在;小鹏被曝年终奖打0.5折 | AI一周资讯

来源: AI前线 微信号&#xff1a;ai-front 整理 | 凌敏 微软宣布开源 Deep Speed Chat&#xff1b;消息称软银旗下 Arm 启动赴美 IPO&#xff1b;国家网信办出台生成式 AI 管理办法&#xff1b;前理想 AI 芯片一号位骄旸加入三星&#xff0c;负责组建 GPU 团队…… 资 讯 Op…

九、Golang测试和性能

一、单元测试 单元测试是用来测试包或者程序的一部分代码或者一组代码的函数。 在Golang中有几种方法写单元测试&#xff0c;基础测试只使用一组参数和结果来测试一段代码。 表组测试也会测试一段代码&#xff0c;但是会使用多组参数和结果进行测试。也可以使用一些方法来模仿测…

Vue3 + TS4.8踩坑之配置husky问题env: sh\r: No such file or directory

一、基本情况&#xff1a; 硬件环境&#xff1a;MacOS 10.14.6 背景&#xff1a; 1&#xff0c;用vue3官方npm init vuelatest初始化创建的vue3 ts4.8项目&#xff0c;IDE是 VS Cde 1.77.3版本 2&#xff0c;初始化项目之后给项目配置了.editorconfig&#xff0c;方便团队…

基于ansible初始化linux服务器基础环境。

大家好&#xff0c;今天我要和大家分享一个关于搭建centos环境的新方法。 以前我们经常会看到一些文章介绍如何搭建centos环境&#xff0c;但很多时候都会出现一些问题。不过现在有了一种新的方法&#xff0c;就是使用ansible脚本来实现。 虽然这种方法仅适用于centos7&#…

Redis 快速上手 Java 增删改查(包含 RedisTemplateConfig 的编写)

一&#xff1a;Redis 数据类型 先了解 redis 的五种基本数据类型。 String 字符串类型&#xff1a;name: "value1"List 列表&#xff1a;names: ["value1", "value2", "value2"]Set 集合&#xff1a;names: ["value1", &qu…