Spark 4/5

news/2025/3/15 16:18:25/

4. 启动Spark Shell编程

4.1 什么是Spark Shell

spark shell是spark中的交互式命令行客户端,可以在spark shell中使用scala编写spark程序,启动后默认已经创建了SparkContext,别名为sc

4.2 启动Spark Shell

 

Shell
/opt/apps/spark-3.2.3-bin-hadoop3.2/bin/spark-shell \
--master spark://node-1.51doit.cn:7077 --executor-memory 1g \
--total-executor-cores 3

如果Master配置了HA高可用,需要指定两个Master(因为这两个Master任意一个都可能是Active状态)

Shell
/bigdata/spark-3.2.3-bin-hadoop3.2/bin/spark-shell \
--master spark://node-1.51doit.cn:7077,node-2.51doit.cn:7077 \
--executor-memory 1g \
--total-executor-cores 3

参数说明:

--master 指定masterd地址和端口,协议为spark://,端口是RPC的通信端口

--executor-memory 指定每一个executor的使用的内存大小

--total-executor-cores指定整个application总共使用了cores

  • 在shell中编写第一个spark程序

Shell
sc.textFile("hdfs://node-1.51doit.cn:9000/words.txt").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).sortBy(_._2,false).saveAsTextFile("hdfs://node-1.51doit.cn:9000/out")

5. Spark编程入门

5.1 Scala编写Spark的WorkCount

5.1.1 创建一个Maven项目

5.1.2 在pom.xml中添加依赖和插件

XML
<!-- 定义的一些常量 -->
<properties>
    <maven.compiler.source>8</maven.compiler.source>
    <maven.compiler.target>8</maven.compiler.target>
    <encoding>UTF-8</encoding>
    <spark.version>3.2.3</spark.version>
    <scala.version>2.12.15</scala.version>
</properties>

<dependencies>
    <!-- scala的依赖 -->
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>${scala.version}</version>
    </dependency>

    <!-- spark core 即为spark内核 ,其他高级组件都要依赖spark core -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>${spark.version}</version>
    </dependency>

</dependencies>

<!-- 配置Maven的镜像库 -->
<!-- 依赖下载国内镜像库 -->
<repositories>
    <repository>
        <id>nexus-aliyun</id>
        <name>Nexus aliyun</name>
        <layout>default</layout>
        <url>http://maven.aliyun.com/nexus/content/groups/public</url>
        <snapshots>
            <enabled>false</enabled>
            <updatePolicy>never</updatePolicy>
        </snapshots>
        <releases>
            <enabled>true</enabled>
            <updatePolicy>never</updatePolicy>
        </releases>
    </repository>
</repositories>

<!-- maven插件下载国内镜像库 -->
<pluginRepositories>
    <pluginRepository>
        <id>ali-plugin</id>
        <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
        <snapshots>
            <enabled>false</enabled>
            <updatePolicy>never</updatePolicy>
        </snapshots>
        <releases>
            <enabled>true</enabled>
            <updatePolicy>never</updatePolicy>
        </releases>
    </pluginRepository>
</pluginRepositories>

<build>
    <pluginManagement>
        <plugins>
            <!-- 编译scala的插件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
            </plugin>
            <!-- 编译java的插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.5.1</version>
            </plugin>
        </plugins>
    </pluginManagement>
    <plugins>
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <executions>
                <execution>
                    <id>scala-compile-first</id>
                    <phase>process-resources</phase>
                    <goals>
                        <goal>add-source</goal>
                        <goal>compile</goal>
                    </goals>
                </execution>
                <execution>
                    <id>scala-test-compile</id>
                    <phase>process-test-resources</phase>
                    <goals>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>

        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <executions>
                <execution>
                    <phase>compile</phase>
                    <goals>
                        <goal>compile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>

        <!-- 打jar插件 -->
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <version>2.4.3</version>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <filters>
                            <filter>
                                <artifact>*:*</artifact>
                                <excludes>
                                    <exclude>META-INF/*.SF</exclude>
                                    <exclude>META-INF/*.DSA</exclude>
                                    <exclude>META-INF/*.RSA</exclude>
                                </excludes>
                            </filter>
                        </filters>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

  • 注意:将粘贴的内容拷贝到指定的位置

 

5.1.3 创建一个scala目录

选择scala目录,右键,将目录转成源码包,或者点击maven的刷新按钮

 

5.1.4 编写Spark程序

Scala
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

/**
  * 1.创建SparkContext
  * 2.创建RDD
  * 3.调用RDD的Transformation(s)方法
  * 4.调用Action
  * 5.释放资源
  */
object WordCount {

  def main(args: Array[String]): Unit = {

    val conf: SparkConf = new SparkConf().setAppName("WordCount")
    //创建SparkContext,使用SparkContext来创建RDD
    val sc: SparkContext = new SparkContext(conf)
    //spark写Spark程序,就是对抽象的神奇的大集合【RDD】编程,调用它高度封装的API
    //使用SparkContext创建RDD
    val lines: RDD[String] = sc.textFile(args(0))

    //Transformation 开始 //
    //切分压平
    val words: RDD[String] = lines.flatMap(_.split(" "))
    //将单词和一组合放在元组中
    val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
    //分组聚合,reduceByKey可以先局部聚合再全局聚合
    val reduced: RDD[(String, Int)] = wordAndOne.reduceByKey(_+_)
    //排序
    val sorted: RDD[(String, Int)] = reduced.sortBy(_._2, false)
    //Transformation 结束 //

    //调用Action将计算结果保存到HDFS中
    sorted.saveAsTextFile(args(1))
    //释放资源
    sc.stop()
  }
}

5.1.5 使用maven打包

  •  使用idea图形界面打包:

 

  • 使用maven命令打包(两种方式任选其一)

Scala
mvn clean package

5.1.6 提交任务

  • 上传jar包到服务器,然后使用sparksubmit命令提交任务

Shell
/bigdata/spark-3.2.3-bin-hadoop3.2/bin/spark-submit \
--master spark://node-1.51doit.cn:7077 \
--executor-memory 1g --total-executor-cores 4 \
--class cn._51doit.spark.day01.WordCount \
/root/spark-in-action-1.0.jar hdfs://node-1.51doit.cn:9000/words.txt hdfs://node-1.51doit.cn:9000/out

参数说明:

--master 指定masterd地址和端口,协议为spark://,端口是RPC的通信端口

--executor-memory 指定每一个executor的使用的内存大小

--total-executor-cores指定整个application总共使用了cores

--class 指定程序的main方法全类名

jar包路径 args0 args1

 

5.2 Java编写Spark的WordCount

5.2.1 使用匿名实现类方式

Java
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;

public class JavaWordCount {

    public static void main(String[] args) {
        SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
        //创建JavaSparkContext
        JavaSparkContext jsc = new JavaSparkContext(sparkConf);
        //使用JavaSparkContext创建RDD
        JavaRDD<String> lines = jsc.textFile(args[0]);
        //调用Transformation(s)
        //切分压平
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String line) throws Exception {
                return Arrays.asList(line.split(" ")).iterator();
            }
        });
        //将单词和一组合在一起
        JavaPairRDD<String, Integer> wordAndOne = words.mapToPair(
                new PairFunction<String, String, Integer>() {
                    @Override
                    public Tuple2<String, Integer> call(String word) throws Exception {
                        return Tuple2.apply(word, 1);
                    }
        });
        //分组聚合
        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey(
                new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        //排序,先调换KV的顺序VK
        JavaPairRDD<Integer, String> swapped = reduced.mapToPair(
                new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tp) throws Exception {
                return tp.swap();
            }
        });
        //再排序
        JavaPairRDD<Integer, String> sorted = swapped.sortByKey(false);
        //再调换顺序
        JavaPairRDD<String, Integer> result = sorted.mapToPair(
                new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tp) throws Exception {
                return tp.swap();
            }
        });
        //触发Action,将数据保存到HDFS
        result.saveAsTextFile(args[1]);
        //释放资源
        jsc.stop();
    }
}
 

5.2.2 使用Lambda表达式方式

Java
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class JavaLambdaWordCount {

    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("JavaLambdaWordCount");
        //创建SparkContext
        JavaSparkContext jsc = new JavaSparkContext(conf);
        //创建RDD
        JavaRDD<String> lines = jsc.textFile(args[0]);
        //切分压平
        JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
        //将单词和一组合
        JavaPairRDD<String, Integer> wordAndOne = words.mapToPair(word -> Tuple2.apply(word, 1));
        //分组聚合
        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey((a, b) -> a + b);
        //调换顺序
        JavaPairRDD<Integer, String> swapped = reduced.mapToPair(tp -> tp.swap());
        //排序
        JavaPairRDD<Integer, String> sorted = swapped.sortByKey(false);
        //调换顺序
        JavaPairRDD<String, Integer> result = sorted.mapToPair(tp -> tp.swap());
        //将数据保存到HDFS
        result.saveAsTextFile(args[1]);
        //释放资源
        jsc.stop();
    }
}

5.3 本地运行Spark和Debug

spark程序每次都打包上在提交到集群上比较麻烦且不方便调试,Spark还可以进行Local模式运行,方便测试和调试

5.3.1 在本地运行

Scala
 //Spark程序local模型运行,local[*]是本地运行,并开启多个线程
val conf: SparkConf = new SparkConf()
  .setAppName("WordCount")
  .setMaster("local[*]") //设置为local模式执行

  • 输入运行参数

 

5.3.2 读取HDFS中的数据

由于往HDFS中的写入数据存在权限问题,所以在代码中设置用户为HDFS目录的所属用户

Scala
//往HDFS中写入数据,将程序的所属用户设置成更HDFS一样的用户
System.setProperty("HADOOP_USER_NAME", "root")

5.4 使用PySpark(选学)

5.4.1 配置python环境

① 在所有节点上按照python3,版本必须是python3.6及以上版本

Shell
yum install -y python3

 

② 修改所有节点的环境变量

Shell
export JAVA_HOME=/usr/local/jdk1.8.0_251
export PYSPARK_PYTHON=python3
export HADOOP_HOME=/bigdata/hadoop-3.2.1
export HADOOP_CONF_DIR=/bigdata/hadoop-3.2.1/etc/hadoop
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin

5.4.2 使用pyspark shell

Shell
/bigdata/spark-3.2.3-bin-hadoop3.2/bin/pyspark \
--master spark://node-1.51doit.cn:7077 \
--executor-memory 1g --total-executor-cores 10

 在pyspark shell使用python编写wordcount

Python
sc.textFile("hdfs://node-1.51doit.cn:8020/data/wc").flatMap(lambda line: line.split(' ')).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b).sortBy(lambda t: t[1], False).saveAsTextFile('hdfs://node-1.51doit.cn:8020/out01')

5.4.3 配置PyCharm开发环境

①配置python的环境

 

②配置pyspark的依赖

 点击Project Structure将Spark安装包下python/lib目录的py4j-*-src.zip和pyspark.zip添加进来

 

③添加环境变量

点击Edit Configuration

 

 在pycharm中使用python编写wordcount

Python
from pyspark import SparkConf, SparkContext

if __name__ == '__main__':
    conf = SparkConf().setAppName('WordCount').setMaster('local[*]')
    sc = SparkContext(conf=conf)
    lines = sc.textFile('file:///Users/star/Desktop/data.txt')
    words = lines.flatMap(lambda line: line.split(' '))
    wordAndOne = words.map(lambda word: (word, 1))
    reduced = wordAndOne.reduceByKey(lambda x, y: x + y)
    result = reduced.sortBy(lambda t: t[1], False)
    print(result.collect())


http://www.ppmy.cn/news/490043.html

相关文章

OpenCV项目开发实战--一步一步介绍使用 OpenPose进行多人姿势估计C++/python实现

文末附基于Python和C++两种方式实现的测试代码下载链接 在我们上一篇文章中中,我们使用OpenPose模型对单个人执行人体姿态估计。在这篇文章中,我们将讨论如何进行多人姿态估计。 当一张照片中有多个人时,姿势估计会产生多个独立的关键点。我们需要弄清楚哪组关键点属于同一…

NXP恩智浦VEGA织女星开发板免费申请!

文章目录 前言关于RV32M1关于织女星开发板关于RISC-V架构ARM和RISC-V公然开撕总结历史精选 前言 大概两周前申请了一块NXP恩智浦的开发板&#xff0c;今天终于收到了&#xff01;在这里推荐给大家&#xff0c;官方网站刚上线一个月左右&#xff0c;目前申请的人还不算多&#…

《笑着离开惠普》读书笔记之人性化管理的典范

人性化管理的典范 假定人性善的惠普价值观 惠普的创建人之一比尔休利特曾经说过:“惠普的所有政策和措施都是来自于一种信念,那就是我们相信每一个员工都有把工作做好的愿望。只要公司能给他们提供一个合适的舞台和环境,员工必定全力以赴。”这就是著名的惠普之道的内涵和出…

转:惠普V3000系列笔记本电流声的解决方法

http://tech.tom.com  2007年02月27日 22时35分硅谷动力 eNet笔记本论坛有各帖子&#xff0c;讲了电流声的解决方法&#xff0c;不知道是不是针对所有hp机型还是怎么地&#xff0c;大家看看&#xff1a;http://nbbbs.enet.com.cn/thread-2879638-1-4.html。下面我要讲的&am…

hp probook fn_如何在HP ProBook(或兼容笔记本电脑)上安装Mac OS X Lion

hp probook fn There’s nothing more satisfying than building a hackintosh, i.e. installing Mac OS X on a non-Apple machine. Although it isn’t as easy as it sounds, but the end result is worth the effort. Building a PC with specific components and installi…

惠普战66怎么用u盘进入系统_惠普战66笔记本怎么装系统?惠普战66装win10系统步骤...

[文章导读]惠普战66是一款很火爆系列的笔记本,采用了intel 8代cpu,我们知道intel 8代cpu不能安装win7,最近有很多网友问惠普星系列预装的win10系统不好用想重装,但是由于惠普战66笔记本采用UEFI模式,不能像普通方式那样安装,需要用u盘的方式安装,并且BIOS要相关设置以及硬…

python的tqdm一些操作

主要参数 iterable: 可迭代的对象, 在手动更新时不需要进行设置 desc: str, 左边进度条的描述性文字 total: 总的项目数 leave: bool, 执行完成后是否保留进度条 file: 输出指向位置, 默认是终端, 一般不需要设置 ncols: 调整进度条宽度, 默认是根据环境自动调节长度, 如果设置…

【数据挖掘实战】——科大讯飞:跨境广告ROI预测(Baseline)

&#x1f935;‍♂️ 个人主页&#xff1a;Lingxw_w的个人主页 ✍&#x1f3fb;作者简介&#xff1a;计算机科学与技术研究生在读 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4a…