多传感器融合定位十五-多传感器时空标定(综述)

news/2025/3/28 7:06:30/

多传感器融合定位十五-多传感器时空标定

  • 1. 多传感器标定简介
    • 1.1 标定内容及方法
    • 1.2 讲解思路
  • 2. 内参标定
    • 2.1 雷达内参标定
    • 2.2 IMU内参标定
    • 2.3 编码器内参标定
    • 2.4 相机内参标定
  • 3. 外参标定
    • 3.1 雷达和相机外参标定
    • 3.2 多雷达外参标定
    • 3.3 手眼标定
    • 3.4 融合中标定
    • 3.5 总结
  • 4. 时间标定
    • 4.1 离散时间
    • 4.2 连续时间
    • 4.3 总结

Reference:

  1. 深蓝学院-多传感器融合
  2. 多传感器融合定位理论基础

文章跳转:

  1. 多传感器融合定位一-3D激光里程计其一:ICP
  2. 多传感器融合定位二-3D激光里程计其二:NDT
  3. 多传感器融合定位三-3D激光里程计其三:点云畸变补偿
  4. 多传感器融合定位四-3D激光里程计其四:点云线面特征提取
  5. 多传感器融合定位五-点云地图构建及定位
  6. 多传感器融合定位六-惯性导航原理及误差分析
  7. 多传感器融合定位七-惯性导航解算及误差分析其一
  8. 多传感器融合定位八-惯性导航解算及误差分析其二
  9. 多传感器融合定位九-基于滤波的融合方法Ⅰ其一
  10. 多传感器融合定位十-基于滤波的融合方法Ⅰ其二
  11. 多传感器融合定位十一-基于滤波的融合方法Ⅱ
  12. 多传感器融合定位十二-基于图优化的建图方法其一
  13. 多传感器融合定位十三-基于图优化的建图方法其二
  14. 多传感器融合定位十四-基于图优化的定位方法
  15. 多传感器融合定位十五-多传感器时空标定(综述)

1. 多传感器标定简介

1.1 标定内容及方法

在这里插入图片描述

1.2 讲解思路

  1. 以思路讲解为主,并给出参考文献和开源代码,不做过多细节展开;
  2. 对已有方法做汇总分析,以求能在新的任务中掌握标定方案设计思路。

2. 内参标定

2.1 雷达内参标定

在这里插入图片描述

  1. 目的
    由于安装原因,线束之间的夹角和设计不一致,会导致测量不准。

  2. 方法
    多线束打在平面上,利用共面约束,求解夹角误差。

  3. 参考
    论文:Calibration of a rotating multi-beam Lidar
    论文:Improving the Intrinsic Calibration of a Velodyne LiDAR Sensor
    论文:3D LIDAR–camera intrinsic and extrinsic calibration: Identifiability and analytical least-squares-based initialization

2.2 IMU内参标定

  1. 目的
    由于加工原因,产生零偏、标度因数误差、安装误差。

  2. 方法
    分立级标定:基于转台;
    迭代优化标定:不需要转台。

  3. 参考
    论文:A Robust and Easy to Implement Method for IMU Calibration without External Equipments
    代码:https://github.com/Kyle-ak/imu_tk

2.3 编码器内参标定

  1. 目的
    用编码器输出解算车的位移增量和角度增量,需已知轮子半径和两轮轴距。

  2. 方法
    以车中心雷达/组合导航做观测,以此为真值,反推模型参数。

  3. 参考
    论文:Simultaneous Calibration of Odometry and Sensor Parameters for Mobile Robots

2.4 相机内参标定

在这里插入图片描述

  1. 目的
    相机与真实空间建立关联,需已知其内参。

  2. 方法
    张正友经典方法

3. 外参标定

3.1 雷达和相机外参标定

在这里插入图片描述

  1. 目的
    解算雷达和相机之间的相对旋转和平移。

  2. 方法
    PnP是主流,视觉提取特征点,雷达提取边缘,建立几何约束。

  3. 参考
    论文: LiDAR-Camera Calibration using 3D-3D Point correspondences
    代码: https://github.com/ankitdhall/lidar_camera_calibration
    论文: Automatic Extrinsic Calibration for Lidar-Stereo Vehicle Sensor Setups
    代码: https://github.com/beltransen/velo2cam_calibration

3.2 多雷达外参标定

在这里插入图片描述

  1. 目的
    多雷达是常见方案,使用时将点云直接拼接,但前提是已知雷达之间的外参(相对旋转和平移)。

  2. 方法
    基于特征(共面)建立几何约束,从而优化外参。

  3. 参考
    论文:A Novel Dual-Lidar Calibration Algorithm Using Planar Surfaces
    代码:https://github.com/ram-lab/lidar_appearance_calibration

3.3 手眼标定

在这里插入图片描述

  1. 目的
    手眼标定适用于所有无共视,但是能输出位姿的传感器之间标定。包括:
    • 无共视的相机、雷达,或雷达与雷达之间;
    • 相机与IMU,或雷达与IMU之间(前提是IMU要足够好,或直接使用组合导航)。

  2. 方法
    均基于公式 A X = X B AX=XB AX=XB

  3. 参考
    论文:LiDAR and Camera Calibration using Motion Estimated by Sensor Fusion Odometry
    代码:https://github.com/ethz-asl/lidar_align

3.4 融合中标定

  1. 目的
    • 脱离标靶,实现在线标定;
    • 某些器件无法提供准确位姿(如低精度IMU),不能手眼标定。

  2. 方法
    在融合模型中,增加外参作为待估参数。

  3. 参考
    众多vio/lio系统,如vins、 lio-mapping、 M-Loam 等

3.5 总结

  1. 这些方法中,推荐优先级从高到低为:
    a. 基于共视的标定
    b. 融合中标定
    c. 手眼标定

  2. 建议
    应在良好环境下标定,尽量避免不分场景的在线标定。良好环境指观测数据优良的场景,例如:
    a. GNSS 信号良好;
    b. 点云面特征丰富,没有特征退化;
    c. 动态物体较少

4. 时间标定

4.1 离散时间

  1. 目的
    在原有离散时间融合模式下,简单地解决时间同步问题。
    在这里插入图片描述

  2. 方案 I
    在这里插入图片描述简单但巧妙的策略: IMU时间保持不变,图像上特征点基于匀速运动模型修改位置。
    与不考虑时间误差时相比,架构不变,使用极小的改动,实现了期望的效果。
    e l k = z l k − π ( R c k w T ( P l − p c k w ) ) z l k = [ u l k v l k ] T . ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ e l k = z l k ( t d ) − π ( R c k w T ( P l − p c k w ) ) z l k ( t d ) = [ u l k v l k ] T + t d V l k . \begin{array}{l} \mathbf{e}_l^k=\mathbf{z}_l^k-\pi\left(\mathbf{R}_{c_k}^{w^T}\left(\mathbf{P}_l-\mathbf{p}_{c_k}^w\right)\right) \\ \mathbf{z}_l^k=\left[\begin{array}{ll} u_l^k & v_l^k \end{array}\right]^T . \\ \downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow\downarrow \\ \mathbf{e}_l^k=\mathbf{z}_l^k\left(t_d\right)-\pi\left(\mathbf{R}_{c_k}^{w^T}\left(\mathbf{P}_l-\mathbf{p}_{c_k}^w\right)\right) \\ \mathbf{z}_l^k\left(t_d\right)=\left[\begin{array}{ll} u_l^k & v_l^k \end{array}\right]^T+t_d \mathbf{V}_l^k . \end{array} elk=zlkπ(RckwT(Plpckw))zlk=[ulkvlk]T.↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓elk=zlk(td)π(RckwT(Plpckw))zlk(td)=[ulkvlk]T+tdVlk.参考文献:Online Temporal Calibration for Monocular Visual-Inertial Systems

  3. 方案 II
    在滤波中计算相机位姿时,直接按时间差对积分区间进行调整。
    状态量: x = [ x I T I C q ‾ T C p I T t d c 1 T ⋯ c M T ] T \mathbf{x}=\left[\begin{array}{lllllll} \mathbf{x}_I^T & { }_I^C \overline{\mathbf{q}}^T & { }^C \mathbf{p}_I^T & t_d & \mathbf{c}_1^T & \cdots & \mathbf{c}_M^T \end{array}\right]^T x=[xITICqTCpITtdc1TcMT]T
    相机位姿估计: c ^ n e w = [ G C q ( t + t d ) ^ G p C ( t + t d ) ^ ] = [ I C q ^ ⊗ G I q ^ ( t + t ^ d ) G p ^ I ( t + t ^ d ) + G I R ^ ( t + t ^ d ) T I p ^ C ] \hat{\mathbf{c}}_{n e w}=\left[\begin{array}{c}{ }_G^C \widehat{\mathbf{q}\left(t+t_d\right)} \\ { }^G \widehat{\mathbf{p}_C\left(t+t_d\right)}\end{array}\right]=\left[\begin{array}{c}{ }_I^C \hat{\mathbf{q}} \otimes{ }_G^I \hat{\mathbf{q}}\left(t+\hat{t}_d\right) \\ { }^G \hat{\mathbf{p}}_I\left(t+\hat{t}_d\right)+{ }_G^I \hat{\mathbf{R}}\left(t+\hat{t}_d\right)^T{ }^I \hat{\mathbf{p}}_C\end{array}\right] c^new=[GCq(t+td) GpC(t+td) ]=[ICq^GIq^(t+t^d)Gp^I(t+t^d)+GIR^(t+t^d)TIp^C]
    参考文献:Online Temporal Calibration for Camera-IMU Systems: Theory and Algorithms

4.2 连续时间

  1. 原因
    预积分中把时间差作为待估状态量,对时间差进行建模,如下:
    Δ p m i = ∑ k = κ i − 1 ( Δ v m k Δ t k + Δ R m k 2 f ⁡ ( t k − δ t m − b f m ) Δ t k 2 ) Δ v m i = ∑ k = κ i − 1 Δ R m k f ( t k − δ t m ) − b f m ) Δ t k Δ R m i = ∏ k = κ i = 1 Exp ⁡ ( ω ( t k − δ t m ) − b ω m ) Δ t k ) , \begin{array}{l} \Delta \mathbf{p}_m^i=\sum_{k=\kappa}^{i-1}\left(\Delta \mathbf{v}_m^k \Delta t_k+\frac{\Delta \mathbf{R}_m^k}{2} \operatorname{f}\left(t_k-\delta_t^m-\mathbf{b}_f^m\right) \Delta t_k^2\right) \\ \left.\Delta \mathbf{v}_m^i=\sum_{k=\kappa}^{i-1} \Delta \mathbf{R}_m^k \mathbf{f}\left(t_k-\delta_t^m\right)-\mathbf{b}_f^m\right) \Delta t_k \\ \left.\Delta \mathbf{R}_m^i=\prod_{k=\kappa}^{i=1} \operatorname{Exp}\left(\omega\left(t_k-\delta_t^m\right)-\mathbf{b}_\omega^m\right) \Delta t_k\right), \end{array} Δpmi=k=κi1(ΔvmkΔtk+2ΔRmkf(tkδtmbfm)Δtk2)Δvmi=k=κi1ΔRmkf(tkδtm)bfm)ΔtkΔRmi=k=κi=1Exp(ω(tkδtm)bωm)Δtk),由于要对时间差求雅可比,因此插值函数必须可导,雅可比如下:
    Δ R m ( b ω , δ t ) i ≈ Δ R m ( b ˉ ω m , δ ˉ δ m ) i Exp ⁡ ( ∂ Δ R m i ∂ b ω b ^ ω m + ∂ Δ R m i ∂ δ t δ ^ t m ) . Δ v m ( b f , b ω , δ t ) i ≈ Δ Δ v m ( b ˉ f m , b ˉ m m , δ ˉ t m ) i + ∂ Δ v m i ∂ b f b ^ f m + ∂ Δ v m i ∂ b ω b ^ ω m + ∂ Δ v m i ∂ δ t δ ^ t m Δ p m ( b f , b ω , , δ t ) i ≈ Δ p m ( b f m ‾ , b ˉ m m , δ ˉ t m ) i + ∂ Δ p m m ∂ b f b ^ f m + ∂ Δ p m i ∂ b ω b ^ ω m + ∂ Δ p m i ∂ δ t δ ^ t m \begin{array}{l} \Delta \mathbf{R}_{m\left(\mathbf{b}_\omega, \delta_t\right)}^i \approx \Delta \mathbf{R}_{m\left(\bar{b}_\omega^m, \bar{\delta}_\delta^m\right)}^i \operatorname{Exp}\left(\frac{\partial \Delta \mathbf{R}_m^i}{\partial \mathbf{b}_\omega} \hat{\mathbf{b}}_\omega^m+\frac{\partial \Delta \mathbf{R}_m^i}{\partial \delta_t} \hat{\delta}_t^m\right). \\ \Delta \mathbf{v}_{m\left(\mathbf{b}_f, \mathbf{b}_\omega, \delta_t\right)}^i \approx \Delta \Delta \mathbf{v}_{m\left(\bar{b}_f^m, \bar{b}_m^m, \bar{\delta}_t^m\right)}^i+\frac{\partial \Delta \mathbf{v}_m^i}{\partial \mathbf{b}_f} \hat{\mathbf{b}}_f^m +\frac{\partial \Delta \mathbf{v}_m^i}{\partial \mathbf{b}_\omega} \hat{\mathbf{b}}_\omega^m+\frac{\partial \Delta \mathbf{v}_m^i}{\partial \delta_t} \hat{\delta}_t^m \\ \Delta \mathbf{p}_{m\left(\mathbf{b}_f, \mathbf{b}_{\omega,}, \delta_t\right)}^i \approx \Delta \mathbf{p}_{m\left(\overline{\mathbf{b}_f^m}, \bar{b}_m^m, \bar{\delta}_t^m\right)}^i+\frac{\partial \Delta \mathbf{p}_m^m}{\partial \mathbf{b}_f} \hat{\mathbf{b}}_f^m +\frac{\partial \Delta \mathbf{p}_m^i}{\partial \mathbf{b}_\omega} \hat{b}_\omega^m+\frac{\partial \Delta \mathbf{p}_m^i}{\partial \delta_t} \hat{\delta}_t^m \\ \end{array} ΔRm(bω,δt)iΔRm(bˉωm,δˉδm)iExp(bωΔRmib^ωm+δtΔRmiδ^tm).Δvm(bf,bω,δt)iΔΔvm(bˉfm,bˉmm,δˉtm)i+bfΔvmib^fm+bωΔvmib^ωm+δtΔvmiδ^tmΔpm(bf,bω,,δt)iΔpm(bfm,bˉmm,δˉtm)i+bfΔpmmb^fm+bωΔpmib^ωm+δtΔpmiδ^tm参考文献:3D Lidar-IMU Calibration based on Upsampled Preintegrated Measurements for Motion Distortion Correction
  2. 方法
    把输入建立为连续时间函数,从而可以在任意时间求导。
  3. 参考
    a. kalibr 系列
    论文:Continuous-Time Batch Estimation using Temporal Basis Functions
    论文:Unified Temporal and Spatial Calibration for Multi-Sensor Systems
    论文:Extending kalibr Calibrating the Extrinsics of Multiple IMUs and of Individual Axes
    代码:https://github.com/ethz-asl/kalibr
    b. 其他
    论文:Targetless Calibration of LiDAR-IMU System Based on Continuous-time Batch Estimation
    代码:https://github.com/APRIL-ZJU/lidar_IMU_calib

4.3 总结

  1. 时间差估计,在某些情况下不得已而为之,实际中应尽量创造条件实现硬同步;
  2. 不得不估计时,也应尽量在良好环境下估计。

http://www.ppmy.cn/news/486601.html

相关文章

多传感器融合定位(二)——基于地图的定位

目录 一、回环检测 1.1 基于Scan Context 1.2 基于直方图 一、回环检测 回环检测只能消除一部分误差,不能消除全部误差。运用视觉用特征点描述子比较简单。 1.1 基于Scan Context 三维降二维,用图像做匹配。 1、划分网格 2、生成scan contest 3、…

学习笔记20--定位系统之多传感器融合定位技术

本系列博客包括6个专栏,分别为:《自动驾驶技术概览》、《自动驾驶汽车平台技术基础》、《自动驾驶汽车定位技术》、《自动驾驶汽车环境感知》、《自动驾驶汽车决策与控制》、《自动驾驶系统设计及应用》,笔者不是自动驾驶领域的专家&#xff…

数据融合-机器人定位

来源:https://www.jianshu.com/p/415b288c8f3d 什么是机器人定位robot_localization robot_localization是一系列的机器人状态估计节点集合,其中每一个都是用于三维平面的机器人非线性状态估计,它包括两个机器人状态估计节点ekf_localization…

多传感器融合定位 第十章 基于优化的定位方法

第十章 基于优化的定位方法 本章是基于先验地图的图优化方法,先验地图的构建可参考多传感器融合定位 第九章 基于优化的建图方法 代码下载: 1.环境配置: 出现以下问题,是由于 make_unique 是c 14的新特性,需要在CM…

基于图像和激光的多模态点云融合与视觉定位

中文摘要 近年来,三维场景重建与定位是计算机视觉领域中重要的研究方向。随着自动驾驶技术与工业机器人技术的不断发展,对于场景重建精度与定位准确度的要求也不断提高。如何利用各种传感器采集到的数据,完成对场景的精确重建与定位&#xff…

基于图像和激光的多模态点云融合与视觉定位【100010392】

基于图像和激光的多模态点云融合与视觉定位 第 1 章 引言 1.1 研究背景及意义 人工智能(ArtificialIntelligence)在过去十几年来的蓬勃发展让现实生活中的许多领域变得日趋无人化与智能化:增强现实(AR)使人能够和虚拟环境进行互动;自动驾驶技术(self-…

一文看懂融合定位技术6种打开方式

碎片化是物联网产业最大的特征,不同的物联网应用有着千差万别的需求,正如没有一项通信技术适配所有物联网应用一样,也没有一项定位技术能满足与所有定位场景,在很多应用场景中,在功能上满足需求后,为了追求…

多传感器融合定位十四-基于图优化的定位方法

多传感器融合定位十四-基于图优化的定位方法 1. 基于图优化的定位简介1.1 核心思路1.2 定位流程 2. 边缘化原理及应用2.1 边缘化原理2.2 从滤波角度理解边缘化 3. 基于kitti的实现原理3.1 基于地图定位的滑动窗口模型3.2 边缘化过程 4. lio-mapping 介绍4.1 核心思想4.2 具体流…