贝叶斯统计已经被广泛应用到物理学、生态学、心理学、计算机、哲学等各个学术领域,其火爆程度已经跨越了学术圈,如促使其自成统计江湖一派的贝叶斯定理在热播美剧《The Big Bang Theory》中都要秀一把。贝叶斯统计学即贝叶斯学派是一门基本思想与传统基于频率思想的统计学即频率学派完全不同的统计学方法,它在统计建模中具有灵活性和先进性特点,使其可以轻松应对复杂数据和模型结构。然而,很多初学者在面对思想、技术和方法都与传统统计学有着较大区别的贝叶斯统计,以及其后验参数获取需要用到的马尔科夫、蒙特卡罗和吉布斯等现代抽样技术,特别是建模中复杂而令人眼花缭乱的脚本文件而畏葸不前。
专题一:
1.1复杂数据回归(混合效应)模型的选择策略
1)科学研究中数据及其复杂性
2)回归分析历史、理论基础
3)回归分析基本假设和常见问题
4)复杂数据回归模型选择策略
1.2 结构方程模型(SEM)生态领域应用简介
-
-
- SEM的定义、生态学领域应用及历史回顾
- SEM的基本结构
- SEM的估计方法
- SEM的路径规则
- SEM路径参数的含义
- SEM分析样本量及模型可识别规则
- SEM构建基本流程
-
1.3如何通过数据探索避免常见统计问题
- 数据缺失(missing value)
- 零值(zero trouble)
- 奇异值/离群值(outliers)
- 异质性(heterogeneity)
- 数据分布正态性(normality)
- 响应变量与预测变量间关系(relationships)
- 交互作用项(interaction)
- 共线性(collinearity)
- 样本独立性(independence)
专题二:R和Rstudio简介及入门和作图
1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等
2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
3) R语言数据文件读取、整理、结果存储等
4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储
专题三:R语言数据清洗-tidyverse包应用
1)tidyvese简介:tidyr、dplyr、readr、%>%等
2)文件操作:不同格式文件读取、多文件同时读取等
3)数据筛选:行筛选、列筛选、条件筛选(字符操作)等
4)数据生成:数据合并、数据拆分、新数据生成(字符操作)等
5)长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总等
专题四:贝叶斯回归模型-回归、方差及协防差分析
1)贝叶斯统计简介
2)贝叶斯回归分析建模、模型诊断、交叉验证、预测和作图
3)贝叶斯回归分析多预测变量:回归、方差、协方差及交互作用
4)贝叶斯回归模型的过度拟合、共线性、分类变量等
专题五:贝叶斯混合效应模型-数据分层和嵌套
1)混合效应模型基本原理
2) 贝叶斯效混合应模型建模步骤及实现
3) 贝叶斯的预测和模型诊断
4)贝叶斯混合效应模型的多重比较
5)贝叶斯混合效应模型的方差分解
专题六:贝叶斯计数数据分析
1)贝叶斯0,1数据分析:二项分布及伯努利分布
2) 贝叶斯泊松分布数据分析
3)贝叶斯过度离散数据分析
4)贝叶斯零膨胀数据分析
5)贝叶斯截断数据分析
专题七:贝叶斯相关数据分析:时间、空间、系统发育相关数据
1)贝叶斯回归模型方差异质性问题及解决途径
2)贝叶斯时间自相关分析:线性及混合效应模型及时间自相关+方差异质性
3)贝叶斯空间自相关分析:空间距离矩阵、空间邻接关系及矩阵
4)贝叶斯系统发育相关分析
专题八:贝叶斯非线性关系数据分析:广义可加(混合)模型(BGAM/BGAMM)和非线性(混合)(BNLM/BNLMM)模型
1)“线性”回归的含义及非线性关系的判定
2)贝叶斯广义可加(混合效应)(GAM/GAMM)模型
3)贝叶斯非线性(混合效应)(NLM/NLMM)模型
专题九:贝叶斯结构方程模型(BSEM)
(1) R语言贝叶斯SEM实现程序包blavaan和brms介绍
(2) 案例1:气候及生态位重叠程度对田鼠物种丰富度影响:模型比较、直接和间接效应计算(blavaan&brms)
(3) 案例2:火烧后对植被恢复影响因素-模型拟合、模型比较和评估(brms)
(4) 案例3:生物地理历史因素对北半球森林的初级生产力的影响(brms)
专题十:超越贝叶斯统计:因果推断
1)因果推断概述-因果关系之梯
2) 因果推断实现(DAG)
3) 贝叶斯回归VS贝叶斯网络-揭开因果迷雾
专题十一:贝叶斯统计结果作图
- 贝叶斯分析结果数据提取和作图准备
- 贝叶斯回归模型结果图:散点图、预测图、箱线图、柱状图、提琴图、密度图及峰峦图等
- 贝叶斯结构方程模型结果图表达
点击查看原文