利用公式 (n-1)3 = n3 -3n2 +3n-1
设 S3 = 13 +23 +33 +43 +...+n3
及 S2 = 12 +22 +32 +42 +...+n2
及 S1 = 1 +2 +3 +4+...+n
得:
S3-3S2+3S1-n = (1-1)3 + (2-1)3+ (3-1)3 + (4-1)3 + ... + (n-1)3 = S3 -n3
所以, 3S2 = 3S1+n3 -n
把 S1= n(n+1)/2 带入上式, 可得:
S2 = n(n+1)(2n+1)/6
即: 12 +22 +32 +42 +...+n2 = n(n+1)(2n+1)/6
可以设想,用同样的方法,可以利用S4而得到S3即13 +23 +33 +43 +...+n3 的公式,依次类推。