Redis 实现限流的三种方式
面对越来越多的高并发场景,限流显示的尤为重要。最近在网上看到几个demo,做一下记录吧。
限流有许多种实现的方式,Redis具有很强大的功能,我用Redis实践了三种的实现方式,可以较为简单的实现其方式。Redis不仅仅是可以做限流,还可以做数据统计,附近的人、排名等功能,这些可能会后续写到。
第一种:基于Redis的setnx的操作
我们在使用Redis的分布式锁的时候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的时候,同时给指定的key设置了过期实践(expire),我们在限流的主要目的就是为了在单位时间内,有且仅有N数量的请求能够访问我的代码程序。所以依靠setnx可以很轻松的做到这方面的功能。
比如我们需要在10秒内限定20个请求,那么我们在setnx的时候可以设置过期时间10,当请求的setnx数量达到20时候即达到了限流效果。
@RestController
@RequestMapping("/redisTest")
public class RedisTestController {@Autowiredprivate RedisTemplate redisTemplate;private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd hh:mm");@GetMapping("/limit")public String limitTest() {String now = formatter.format(LocalDateTime.now());Long count = redisTemplate.opsForValue().increment(now + ":limit");if (count > 5) {return "不好意思,服务器正忙,请一分钟后再试......";} else {return "服务端正在处理";}}
}
当然这种做法的弊端是很多的,比如当统计1-10秒的时候,无法统计2-11秒之内,如果需要统计N秒内的M个请求,那么我们的Redis中需要保持N个key等等问题.
第二种:基于Redis的数据结构zset
其实限流涉及的最主要的就是滑动窗口,上面也提到1-10怎么变成2-11。其实也就是起始值和末端值都各+1即可。
而我们如果用Redis的list数据结构可以轻而易举的实现该功能
我们可以将请求打造成一个zset数组,当每一次请求进来的时候,value保持唯一,可以用UUID生成,而score可以用当前时间戳表示,因为score我们可以用来计算当前时间戳之内有多少的请求数量。而zset数据结构也提供了range方法让我们可以很轻易的获取到2个时间戳内有多少请求
代码如下
@RestController
@RequestMapping("/redisTest")
public class RedisTestController {@Autowiredprivate RedisTemplate redisTemplate;@GetMapping("/Sliding")public String testSlidingWindow() {Long currentTime = System.currentTimeMillis();System.out.println(currentTime);if (redisTemplate.hasKey("limit")) {// intervalTime是限流的时间Long intervalTime = 60000L;Integer count = redisTemplate.opsForZSet().rangeByScore("limit", currentTime - intervalTime, currentTime).size();System.out.println(count);if (count != null && count > 5) {return "每分钟最多只能访问5次";}}redisTemplate.opsForZSet().add("limit", UUID.randomUUID().toString(), currentTime);return "访问成功";}
}
通过上述代码可以做到滑动窗口的效果,并且能保证每N秒内至多M个请求,缺点就是zset的数据结构会越来越大。实现方式相对也是比较简单的。
第三种:基于Redis的令牌桶算法
提到限流就不得不提到令牌桶算法了。
令牌桶算法提及到输入速率和输出速率,当输出速率大于输入速率,那么就是超出流量限制了。
也就是说我们每访问一次请求的时候,可以从Redis中获取一个令牌,如果拿到令牌了,那就说明没超出限制,而如果拿不到,则结果相反。
实现方案1:
依靠上述的思想,我们可以结合Redis的List数据结构很轻易的做到这样的代码,只是简单实现
依靠List的leftPop来获取令牌
// 输出令牌
public Response limitFlow2(Long id){Object result = redisTemplate.opsForList().leftPop("limit_list");if(result == null){return Response.ok("当前令牌桶中无令牌");}return Response.ok(articleDescription2);}
再依靠Java的定时任务,定时往List中rightPush令牌,当然令牌也需要唯一性,所以我这里还是用UUID进行了生成
// 10S的速率往令牌桶中添加UUID,只为保证唯一性@Scheduled(fixedDelay = 10_000,initialDelay = 0)public void setIntervalTimeTask(){redisTemplate.opsForList().rightPush("limit_list",UUID.randomUUID().toString());}
实现方案2:
Redisson可以实现很多东西,在Redis的基础上,Redisson做了超多的封装,不仅可以用来实现分布式锁,还可以帮助我们实现令牌桶限流。
RateLimter主要作用就是可以限制调用接口的次数。主要原理就是调用接口之前,需要拥有指定个令牌。限流器每秒会产生X个令牌放入令牌桶,调用接口需要去令牌桶里面拿令牌。如果令牌被其它请求拿完了,那么自然而然,当前请求就调用不到指定的接口。
RateLimter实现限流
/*** @author: AngJie* @create: 2022-07-26 14:41**/
@RestController
@RequestMapping("/redisTest")
public class RedisTestController {@Autowiredprivate RedisTemplate redisTemplate;@Autowiredprivate Redisson redisson;@GetMapping("/Token")public String testTokenBucket() {RRateLimiter rateLimiter = redisson.getRateLimiter("myRateLimiter");// 最大流速 = 每10秒钟产生1个令牌rateLimiter.trySetRate(RateType.OVERALL, 1, 10, RateIntervalUnit.SECONDS);//需要1个令牌if (rateLimiter.tryAcquire(1)) {return "令牌桶里面有可使用的令牌";}return "不好意思,请过十秒钟再来~~~~~~~";}
}
综上,代码实现起始都不是很难,针对这些限流方式我们可以在AOP或者filter中加入以上代码,用来做到接口的限流,最终保护你的网站。
Redis其实还有很多其他的用处,他的作用不仅仅是缓存,分布式锁的作用。他的数据结构也不仅仅是只有String,Hash,List,Set,Zset。有兴趣的可以后续了解下他的GeoHash算法、BitMap、HLL以及布隆过滤器数据(Redis4.0之后加入,可以用Docker直接安装redislabs/rebloom)结构。