数据库系统有一个核心部件,那就是SQL解释器。用过mySQL的同学都知道,我们需要写一系列由SQL语言组成的代码来驱动数据库的运行,由此它就必须要有一个SQL语言解释器来解读SQL代码,然后根据代码的意图来驱动数据库执行相应的操作,本节我们就完成一个简单的SQL解释器。
解释器的原理基于编译原理,我在B站上专门有视频解释编译原理算法,因此我在这里不再赘述。实现一个解释器的首要步骤就是完成一个词法解析器,我在B站编译原理视频中实现过一个小型编译器(dragon-compiler),因此我将其对应的词法解析器直接拿过来稍作改动,让其能对SQL代码进行词法解析。首先我们把其中的lexer部分直接拷贝到我们现在的项目,打开其中的token.go文件,我们首先修改其中token的定义,将SQL语言中关键字的定义添加进去,然后去除与 SQL无关的定义,修改后代码如下:
package lexertype Tag uint32const (//AND 对应SQL关键字AND Tag = iota + 256//BREAK//DOEQFALSEGEID//IF//ELSEINDEXLEINTFLOATMINUSPLUSNENUM//ORREAL//TRUE//WHILELEFT_BRACE // "{"RIGHT_BRACE // "}"LEFT_BRACKET //"("RIGHT_BRACKET //")"AND_OPERATOROR_OPERATORASSIGN_OPERATORNEGATE_OPERATORLESS_OPERATORGREATER_OPERATORBASIC //对应int , float, bool, char 等类型定义//TEMP //对应中间代码的临时寄存器变量//SEMICOLON//新增SQL对应关键字SELECTFROMWHEREINSERTINTOVALUESDELETEUPDATESETCREATETABLEINTVARCHARVIEWASINDEXONCOMMASTRING//SQL关键字定义结束EOFERROR
)var token_map = make(map[Tag]string)func init() {//初始化SQL关键字对应字符串token_map[AND] = "AND"token_map[SELECT] = "SELECT"token_map[WHERE] = "where"token_map[INSERT] = "INSERT"token_map[INTO] = "INTO"token_map[VALUES] = "VALUES"token_map[DELETE] = "DELETE"token_map[UPDATE] = "UPDATE"token_map[SET] = "SET"token_map[CREATE] = "CREATE"token_map[TABLE] = "TABLE"token_map[INT] = "INT"token_map[VARCHAR] = "VARCHAR"token_map[VIEW] = "VIEW"token_map[AS] = "AS"token_map[INDEX] = "INDEX"token_MAP[ON] = "ON"token_map[COMMA] = ","token_map[BASIC] = "BASIC"//token_map[DO] = "do"//token_map[ELSE] = "else"token_map[EQ] = "EQ"token_map[FALSE] = "FALSE"token_map[GE] = "GE"token_map[ID] = "ID"//token_map[IF] = "if"token_map[INT] = "int"token_map[FLOAT] = "float"token_map[LE] = "<="token_map[MINUS] = "-"token_map[PLUS] = "+"token_map[NE] = "!="token_map[NUM] = "NUM"token_map[OR] = "OR"token_map[REAL] = "REAL"//token_map[TEMP] = "t"token_map[TRUE] = "TRUE"//token_map[WHILE] = "while"//token_map[DO] = "do"//token_map[BREAK] = "break"token_map[AND_OPERATOR] = "&"token_map[OR_OPERATOR] = "|"token_map[ASSIGN_OPERATOR] = "="token_map[NEGATE_OPERATOR] = "!"token_map[LESS_OPERATOR] = "<"token_map[GREATER_OPERATOR] = ">"token_map[LEFT_BRACE] = "{"token_map[RIGHT_BRACE] = "}"token_map[LEFT_BRACKET] = "("token_map[RIGHT_BRACKET] = ")"token_map[EOF] = "EOF"token_map[ERROR] = "ERROR"//token_map[SEMICOLON] = ";"}type Token struct {lexeme stringTag Tag
}func (t *Token) ToString() string {if t.lexeme == "" {return token_map[t.Tag]}return t.lexeme
}func NewToken(tag Tag) Token {return Token{lexeme: "",Tag: tag,}
}func NewTokenWithString(tag Tag, lexeme string) *Token {return &Token{lexeme: lexeme,Tag: tag,}
}
在上面代码修改中,我们把原来C语言的关键字去掉,增加了一系列SQL语言对应的关键字。打开文件word_token.go,做如下修改:
package lexertype Word struct {lexeme stringTag Token
}func NewWordToken(s string, tag Tag) Word {return Word{lexeme: s,Tag: NewToken(tag),}
}func (w *Word) ToString() string {return w.lexeme
}func GetKeyWords() []Word {key_words := []Word{}key_words = append(key_words, NewWordToken("||", OR))key_words = append(key_words, NewWordToken("==", EQ))key_words = append(key_words, NewWordToken("!=", NE))key_words = append(key_words, NewWordToken("<=", LE))key_words = append(key_words, NewWordToken(">=", GE))//增加SQL语言对应关键字key_words = append(key_words, NewWordToken("AND", AND))key_words = append(key_words, NewWordToken("SELECT", SELECT))key_words = append(key_words, NewWordToken("FROM", FROM))key_words = append(key_words, NewWordToken("INSERT", INSERT))key_words = append(key_words, NewWordToken("INTO", INTO))key_words = append(key_words, NewWordToken("VALUES", VALUES))key_words = append(key_words, NewWordToken("DELETE", DELETE))key_words = append(key_words, NewWordToken("UPDATE", UPDATE))key_words = append(key_words, NewWordToken("SET", SET))key_words = append(key_words, NewWordToken("CREATE", CREATE))key_words = append(key_words, NewWordToken("TABLE", TABLE))key_words = append(key_words, NewWordToken("INT", INT))key_words = append(key_words, NewWordToken("VARCHAR", VARCHAR))key_words = append(key_words, NewWordToken("VIEW", VIEW))key_words = append(key_words, NewWordToken("AS", AS))key_words = append(key_words, NewWordToken("INDEX", INDEX))key_words = append(key_words, NewWordToken("ON", ON))//key_words = append(key_words, NewWordToken("minus", MINUS))//key_words = append(key_words, NewWordToken("true", TRUE))//key_words = append(key_words, NewWordToken("false", FALSE))//key_words = append(key_words, NewWordToken("if", IF))//key_words = append(key_words, NewWordToken("else", ELSE))//增加while, do关键字//key_words = append(key_words, NewWordToken("while", WHILE))//key_words = append(key_words, NewWordToken("do", DO))//key_words = append(key_words, NewWordToken("break", BREAK))//添加类型定义//key_words = append(key_words, NewWordToken("int", BASIC))//key_words = append(key_words, NewWordToken("float", BASIC))//key_words = append(key_words, NewWordToken("bool", BASIC))//key_words = append(key_words, NewWordToken("char", BASIC))return key_words
}
这里的修改中也是把原来对应C语言的关键字去掉,增加上SQL语言的关键字定义。除了这些修改外,lexer的基本逻辑没有什么变化,其代码如下(lexer.go):
package lexerimport ("bufio""strconv""strings""unicode"
)type Lexer struct {Lexeme stringlexemeStack []stringtokenStack []Tokenpeek byteLine uint32reader *bufio.Readerread_pointer intkey_words map[string]Token
}func NewLexer(source string) Lexer {str := strings.NewReader(source)source_reader := bufio.NewReaderSize(str, len(source))lexer := Lexer{Line: uint32(1),reader: source_reader,key_words: make(map[string]Token),}lexer.reserve()return lexer
}func (l *Lexer) ReverseScan() {/*back_len := len(l.Lexeme)只能un read 一个字节for i := 0; i < back_len; i++ {l.reader.UnreadByte()}*/if l.read_pointer > 0 {l.read_pointer = l.read_pointer - 1}}func (l *Lexer) reserve() {key_words := GetKeyWords()for _, key_word := range key_words {l.key_words[key_word.ToString()] = key_word.Tag}
}func (l *Lexer) Readch() error {char, err := l.reader.ReadByte() //提前读取下一个字符l.peek = charreturn err
}func (l *Lexer) ReadCharacter(c byte) (bool, error) {chars, err := l.reader.Peek(1)if err != nil {return false, err}peekChar := chars[0]if peekChar != c {return false, nil}l.Readch() //越过当前peek的字符return true, nil
}func (l *Lexer) UnRead() error {return l.reader.UnreadByte()
}func (l *Lexer) Scan() (Token, error) {if l.read_pointer < len(l.lexemeStack) {l.Lexeme = l.lexemeStack[l.read_pointer]token := l.tokenStack[l.read_pointer]l.read_pointer = l.read_pointer + 1return token, nil} else {l.read_pointer = l.read_pointer + 1}for {err := l.Readch()if err != nil {return NewToken(ERROR), err}if l.peek == ' ' || l.peek == '\t' {continue} else if l.peek == '\n' {l.Line = l.Line + 1} else {break}}l.Lexeme = ""switch l.peek {case ',':l.Lexeme = ","l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(COMMA)l.tokenStack = append(l.tokenStack, token)return token, nilcase '{':l.Lexeme = "{"l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(LEFT_BRACE)l.tokenStack = append(l.tokenStack, token)return token, nilcase '}':l.Lexeme = "}"l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(RIGHT_BRACE)l.tokenStack = append(l.tokenStack, token)return token, nilcase '+':l.Lexeme = "+"l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(PLUS)l.tokenStack = append(l.tokenStack, token)return token, nilcase '-':l.Lexeme = "-"l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(MINUS)l.tokenStack = append(l.tokenStack, token)return token, nilcase '(':l.Lexeme = "("l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(LEFT_BRACKET)l.tokenStack = append(l.tokenStack, token)return token, nilcase ')':l.Lexeme = ")"l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(RIGHT_BRACKET)l.tokenStack = append(l.tokenStack, token)return token, nilcase '&':l.Lexeme = "&"if ok, err := l.ReadCharacter('&'); ok {l.Lexeme = "&&"word := NewWordToken("&&", AND)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(AND_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '|':l.Lexeme = "|"if ok, err := l.ReadCharacter('|'); ok {l.Lexeme = "||"word := NewWordToken("||", OR)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(OR_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '=':l.Lexeme = "="if ok, err := l.ReadCharacter('='); ok {l.Lexeme = "=="word := NewWordToken("==", EQ)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(ASSIGN_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '!':l.Lexeme = "!"if ok, err := l.ReadCharacter('='); ok {l.Lexeme = "!="word := NewWordToken("!=", NE)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(NEGATE_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '<':l.Lexeme = "<"if ok, err := l.ReadCharacter('='); ok {l.Lexeme = "<="word := NewWordToken("<=", LE)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(LESS_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '>':l.Lexeme = ">"if ok, err := l.ReadCharacter('='); ok {l.Lexeme = ">="word := NewWordToken(">=", GE)l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, word.Tag)return word.Tag, err} else {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(GREATER_OPERATOR)l.tokenStack = append(l.tokenStack, token)return token, err}case '"':for {err := l.Readch()if l.peek == '"' {haveSeenQuote = falsel.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(STRING)l.tokenStack = append(l.tokenStack, token)return token, nil}if err != nil {panic("string no end with quota")}l.Lexeme += string(l.peek)}}if unicode.IsNumber(rune(l.peek)) {var v intvar err errorfor {num, err := strconv.Atoi(string(l.peek))if err != nil {if l.peek != 0 { //l.peek == 0 意味着已经读完所有字符l.UnRead() //将字符放回以便下次扫描}break}v = 10*v + numl.Lexeme += string(l.peek)l.Readch()}if l.peek != '.' {l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(NUM)token.lexeme = l.Lexemel.tokenStack = append(l.tokenStack, token)return token, err}l.Lexeme += string(l.peek)l.Readch() //越过 "."x := float64(v)d := float64(10)for {l.Readch()num, err := strconv.Atoi(string(l.peek))if err != nil {if l.peek != 0 { //l.peek == 0 意味着已经读完所有字符l.UnRead() //将字符放回以便下次扫描}break}x = x + float64(num)/dd = d * 10l.Lexeme += string(l.peek)}l.lexemeStack = append(l.lexemeStack, l.Lexeme)token := NewToken(REAL)token.lexeme = l.Lexemel.tokenStack = append(l.tokenStack, token)return token, err}if unicode.IsLetter(rune(l.peek)) {var buffer []bytefor {buffer = append(buffer, l.peek)l.Lexeme += string(l.peek)l.Readch()if !unicode.IsLetter(rune(l.peek)) {if l.peek != 0 { //l.peek == 0 意味着已经读完所有字符l.UnRead() //将字符放回以便下次扫描}break}}s := string(buffer)token, ok := l.key_words[s]if ok {l.lexemeStack = append(l.lexemeStack, l.Lexeme)l.tokenStack = append(l.tokenStack, token)return token, nil}l.lexemeStack = append(l.lexemeStack, l.Lexeme)token = NewToken(ID)token.lexeme = l.Lexemel.tokenStack = append(l.tokenStack, token)return token, nil}return NewToken(EOF), nil
}
为了节省篇幅,这里我没有把所有文件对应改动都贴出来,请在B站搜索"coding迪斯尼"查看详细内容,下面我们调用上面实现的代码试试效果,在main.go中添加如下测试代码:
import ("fmt""lexer"
)func main() {sqlLexer := lexer.NewLexer("select name , sex from student where age > 20")var tokens []*lexer.Tokentokens = append(tokens, lexer.NewTokenWithString(lexer.SELECT, "select"))tokens = append(tokens, lexer.NewTokenWithString(lexer.ID, "name"))tokens = append(tokens, lexer.NewTokenWithString(lexer.COMMA, ","))tokens = append(tokens, lexer.NewTokenWithString(lexer.ID, "sex"))tokens = append(tokens, lexer.NewTokenWithString(lexer.FROM, "from"))tokens = append(tokens, lexer.NewTokenWithString(lexer.ID, "student"))tokens = append(tokens, lexer.NewTokenWithString(lexer.WHERE, "where"))tokens = append(tokens, lexer.NewTokenWithString(lexer.ID, "age"))tokens = append(tokens, lexer.NewTokenWithString(lexer.GREATER_OPERATOR, ">"))tokens = append(tokens, lexer.NewTokenWithString(lexer.NUM, "20"))for _, tok := range tokens {sqlTok, err := sqlLexer.Scan()if err != nil {fmt.Println("lexer error")break}if sqlTok.Tag != tok.Tag {errText := fmt.Sprintf("token err, expect: %v, but got %v\n", tok, sqlTok)fmt.Println(errText)break}}fmt.Println("lexer testing pass...")
}
通过运行可以发现,最后一句"lexer testing pass…"能正常打印出来,因此词法解析器的基本逻辑是正确的。接下来看看语法解析的实现,基于篇幅所限,这里我们只处理SQL的一小部分,有兴趣的同学可以自行补全我们这里完成的SQL解释器,首先我们先定义要解析的SQL语法部分:
FIELD -> ID
CONSTANT -> STRING | NUM
EXPRESSION -> FIELD | CONSTANT
TERM -> EXPRESSION EQ EXPRESSION
PREDICATE -> TERM (AND PREDICATE)?
QUERY -> SELECT SELECT_LIST FROM TABLE_LIST (WHERE PREDICATE)?
SELECTION_LIST -> FIELD (COMMA SELECTION_LIST)?
TABLE_LIST -> ID (COMMA TABLE_LIST)?
UPDATE_COMMAND -> INSERT_COMMAND | DELETE_COMMAND | MODIFY_COMMAND | CREATE_COMMAND
CREATE_COMMAND -> CREATE_TABLE | CREATE_VIEW | CREATE_INDEX
INSERT_COMMAND -> INSERT INTO ID LEFT_BRACE FIELD_LIST RIGHT_BRACE VALUES CONSTANT_LIST
FIELD_LIST -> FIELD (COMMA FIELD_LIST)?
CONSTANT_LIST -> CONSTANT (COMMA CONSTANT_LIST)?
DELETE_COMMAND -> DELETE FROM ID (WHERE PREDICATE)?
MODIFY_COMMAND -> UPDATE ID SET FIELD EQ EXPRESSION (WHERE PREDICATE)?
CREATE_TABLE -> CREATE TABLE FIELD_DEFS
FIELD_DEFS -> FIELD_DEF (COMMA FIELD_DEFS)?
FIELD_DEF -> ID TYPE_DEF
TYPE_DEF -> INT | VARCHAR LEFT_BRACE NUM RIGHT_BRACE
CREATE_VIEW -> CREATE VIEW ID AS QUERY
CREATE_INDEX -> CREATE INDEX ID ON ID LEFT_BRACE FIELD RIGHT_BRACE
接下来我们看看如何通过上面语法规则对SQL代码进行解析。这里我们采用自顶向下的递归式解析法,具体算法过程可以参考我在b站的编译原理视频。在工程中新建一个文件夹叫parser,然后再里面添加parser.go文件,为了简单起见,我们一次完成一小部分,然后调用完成的代码看看结果是否正确,首先我们完成TERM这条规则的解析,代码如下:
package parserimport ("lexer""query""strconv""strings"
)type SQLParser struct {sqlLexer lexer.Lexer
}func NewSQLParser(s string) *SQLParser {return &SQLParser{sqlLexer: lexer.NewLexer(s),}
}func (p *SQLParser) Field() (lexer.Token, string) {tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag != lexer.ID {panic("Tag of FIELD is no ID")}return tok, p.sqlLexer.Lexeme
}func (p *SQLParser) Constant() *query.Constant {tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}switch tok.Tag {case lexer.STRING:s := strings.Clone(p.sqlLexer.Lexeme)return query.NewConstantWithString(&s)breakcase lexer.NUM://注意堆栈变量在函数执行后是否会变得无效v, err := strconv.Atoi(p.sqlLexer.Lexeme)if err != nil {panic("string is not a number")}return query.NewConstantWithInt(&v)breakdefault:panic("token is not string or num when parsing constant")}return nil
}func (p *SQLParser) Expression() *query.Expression {tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag == lexer.ID {p.sqlLexer.ReverseScan()_, str := p.Field()return query.NewExpressionWithString(str)} else {p.sqlLexer.ReverseScan()constant := p.Constant()return query.NewExpressionWithConstant(constant)}
}func (p *SQLParser) Term() *query.Term {lhs := p.Expression()tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag != lexer.ASSIGN_OPERATOR {panic("should have = in middle of term")}rhs := p.Expression()return query.NewTerm(lhs, rhs)
}
TERM规则解析的是类似这样的表达式"age < 20", "name = ‘jim’ "等尝出现在where 右边的表达式。我们调用上面解析代码进行测试看看,在main.go中输入如下代码:
import ("fmt""parser"
)func main() {sqlParser := parser.NewSQLParser("age = 20")term := sqlParser.Term()s := fmt.Sprintf("term: %v\n", term)fmt.Println(s)
}
请到B站查看我对上面代码进行调试演示的过程,这样更容易理解和吃透代码逻辑。接下来我们继续完成如下语法的解析:
PREDICATE -> TERM (AND PREDICATE)?
QUERY -> SELECT SELECT_LIST FROM TABLE_LIST (WHERE PREDICATE)?
SELECTION_LIST -> FIELD (COMMA SELECTION_LIST)?
TABLE_LIST -> ID (COMMA TABLE_LIST)?
这里需要注意的是PREDICATE对应的是where 后面的部分,例如where a > b and c < d,这条语句中"a>b and c < d"就是语法中的PREDICATE,对应代码如下:
func (p *SQLParser) Predicate() *query.Predicate {//predicate 对应where 语句后面的判断部分,例如where a > b and c < b//这里的a > b and c < b就是predicatepred := query.NewPredicateWithTerms(p.Term())tok, err := p.sqlLexer.Scan()// 如果语句已经读取完则直接返回if err != nil && fmt.Sprint(err) != "EOF" {panic(err)}if tok.Tag == lexer.AND {pred.ConjoinWith(p.Predicate())} else {p.sqlLexer.ReverseScan()}return pred
}func (p *SQLParser) Query() *QueryData {//query 解析select 语句tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag != lexer.SELECT {panic("token is not select")}fields := p.SelectList()tok, err = p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag != lexer.FROM {panic("token is not from")}//获取select语句作用的表名tables := p.TableList()//判断select语句是否有where子句tok, err = p.sqlLexer.Scan()if err != nil {panic(err)}pred := query.NewPredicate()if tok.Tag == lexer.WHERE {pred = p.Predicate()} else {p.sqlLexer.ReverseScan()}return NewQueryData(fields, tables, pred)
}func (p *SQLParser) SelectList() []string {//SELECT_LIST 对应select关键字后面的列名称l := make([]string, 0)_, field := p.Field()l = append(l, field)tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag == lexer.COMMA {//selct 多个列,每个列由逗号隔开selectList := p.SelectList()l = append(l, selectList...)} else {p.sqlLexer.ReverseScan()}return l
}func (p *SQLParser) TableList() []string {//TBALE_LSIT对应from后面的表名l := make([]string, 0)tok, err := p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag != lexer.ID {panic("token is not id")}l = append(l, p.sqlLexer.Lexeme)tok, err = p.sqlLexer.Scan()if err != nil {panic(err)}if tok.Tag == lexer.COMMA {tableList := p.TableList()l = append(l, tableList...)} else {p.sqlLexer.ReverseScan()}return l
}
新增一个go文件名为query_data.go,我们使用数据结构QueryData来存储select语句的解析结果,起内容如下:
package parser//QueryData 用来描述select语句的操作信息
import ("query"
)type QueryData struct {fields []stringtables []stringpred *query.Predicate
}func NewQueryData(fields []string, tables []string, pred *query.Predicate) *QueryData {return &QueryData{fields: fields,tables: tables,pred: pred,}
}func (q *QueryData) Fields() []string {return q.fields
}func (q *QueryData) Tables() []string {return q.tables
}func (q *QueryData) Pred() *query.Predicate {return q.pred
}func (q *QueryData) ToString() string {result := "select "for _, fldName := range q.fields {result += fldName + ", "}// 去掉最后一个逗号result = result[:len(result)-1]result += " from "for _, tableName := range q.tables {result += tableName + ", "}// 去掉最后一个逗号result = result[:len(result)-1]predStr := q.pred.ToString()if predStr != "" {result += " where " + predStr}return result
}
假设有SQL语句如下:
select age, name, sex from student, department where age = 20 and sex = "male"
那么我们就能调用上面代码中的Query来启动解析,其中select后面的列表名也就是"age, name, sex"由函数SelectList负责解析,from 后面的表名由函数TableList 负责解析,where后面的内容由Predicate解析,其中他会把age = 20 和 sex = "male“ 解析成expression,我们在main.go中添加如下代码,以便调用起上面代码:
import ("fmt""parser"
)func main() {sqlParser := parser.NewSQLParser("select age, name, sex from student, department where age = 20 and sex = \"male\" ")queryData := sqlParser.Query()fmt.Println(queryData.ToString())
}
具体的调试演示过程请大家参看b站上的视频,通过调试演示我们才能更好的理解解析逻辑。由于本节内容较多,我们将其分割成几个小节来处理。