pokemon_analysis
- 一、分析背景
- 二、分析步骤
- 三、其他分析
- 特别说明
一、分析背景
宝可梦数据分析-平民最强宝可梦选择方案
二、分析步骤
- 下载数据集
- 数据预处理
- 数据分析及数据可视化
- 结论
阿里云
导入库
#导入库
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
读取数据、查看前5行
#读取数据
df = pd.read_csv("pokemon.csv")
#查看前5行
df.head()
查看数据尺寸
#查看数据尺寸
df.shape
查看详细的每个列的信息
#详细的每个列的信息
df.info()
说明:可以看出数据有缺失
计算出每个特征有多少百分比是缺失的
# 计算出每个特征有多少百分比是缺失的
percent_missing = df.isnull().sum() * 100 / len(df)
missing_value_df = pd.DataFrame({'column_name': df.columns,'percent_missing': percent_missing
})
missing_value_df.sort_values(by='percent_missing', ascending=False).head(10)
说明:通过查看以上数据,我们可以发现,type2 这个字段缺失的比率最高,达到了 48% 左右。说明超过半数的宝可梦还是单纯的只有一个属性,剩下一般的则具有两种属性。
然后第二个问题就是:这么多宝可梦,每代分别有几只?这里我们可以通过简单的 df[‘generation’].value_counts() 来得到。但是为了更加直观的表现出不同代的宝可梦的数量差别,这里我们可以用pandas自带的画图的功能来绘制一个柱状图:通过查看以上数据,我们可以发现,type2 这个字段缺失的比率最高,达到了 48% 左右。说明超过半数的宝可梦还是单纯的只有一个属性,剩下一般的则具有两种属性。
然后第二个问题就是:这么多宝可梦,每代分别有几只?这里我们可以通过简单的 df[‘generation’].value_counts() 来得到。但是为了更加直观的表现出不同代的宝可梦的数量差别,这里我们可以用pandas自带的画图的功能来绘制一个柱状图:
查看各代口袋妖怪的数量
# 查看各代口袋妖怪的数量
df['generation'].value_counts().sort_values(ascending=False).plot.bar()
说明:不难发现,宝可梦数量最多的是在第5代,最少的是在第6代。然后我们再来看不同的主属性的分布。 这里我们可以先做一些简单的假设,比如虫属性的宝可梦种类比较多因为在剧中出现的频率相当高,而且有很多种进化。
查看每个系口袋妖怪的数量
# 查看每个系口袋妖怪的数量
df['type1'].value_counts().sort_values(ascending=True).plot.barh()
说明:这里我们将之前的柱状图横过来了,更便于观察。这里我们可以看到,数量最多的宝可梦是水系,然后是普通,然后是草系。虫系只排在了第四,并没有和预期中那样那么多。
看完了基础的一些分布,接下来我会想做一些简单的相关性分析。我们可以通过以下的代码生成相关性图来了解不同特征之间的关联,这对我们了解宝可梦的特性很有帮助。
相关性热力图分析
# 相关性热力图分析
plt.subplots(figsize=(20,15))
ax = plt.axes()
ax.set_title("Correlation Heatmap")
corr = df.corr()
sns.heatmap(corr, xticklabels=corr.columns.values,yticklabels=corr.columns.values)
说明:比如通过观察 attack 这一个特征和 height_m 是正相关的,我们可以得出:越高的宝可梦,攻击力越高。但是再看 height_m,我们会发现它和 base_happiness 是负相关的。这个时候我们可以作出另外一个结论:长得高的宝可梦可能都不太开心。
从宝可梦在实战中的角度来分析这组数据
接下来我们从宝可梦在实战中的角度来分析这组数据。这里我们只关注六个基础值:血量,攻击力,防御力,特攻,特防,速度。因为只有这六个基础值决定了一只宝可梦的战斗力在不考虑派系克制的情况下。
interested = ['hp','attack','defense','sp_attack','sp_defense','speed']
sns.pairplot(df[interested])
说明:这里我们可以看到大部分都是成正比例的,一个值的提高往往会拉高另外一个值。这点我们通过相关性热力图也可以看到
通过相关性分析heatmap分析五个基础属性
# 通过相关性分析heatmap分析五个基础属性
plt.subplots(figsize=(10,8))
ax = plt.axes()
ax.set_title("Correlation Heatmap")
corr = df[interested].corr()
sns.heatmap(corr, xticklabels=corr.columns.values,yticklabels=corr.columns.values,annot=True, fmt="f",cmap="YlGnBu")
看完这些以后,我们就可以开始计算种族值然后来选取我们的平民神兽了。毕竟不是每个人都能收服代欧奇希斯,超梦,梦幻这种传说级别的宝可梦。这里我们可以通过如下方式,先做一个特征类型转化,然后再计算
for c in interested:df[c] = df[c].astype(float)
df = df.assign(total_stats = df[interested].sum(axis=1))
df[df.total_stats >= 525].shape
df.info()
这样我们就完成了用 total_stats 这个字段来存储种族值这一特征。我们可以做个柱状图可视化来看看种族值的分布是什么样的:
种族值分布
# 种族值分布
total_stats = df.total_stats
plt.hist(total_stats,bins=35)
plt.xlabel('total_stats')
plt.ylabel('Frequency')
同时我们还可以根据不同的属性来看:
plt.subplots(figsize=(20,12))
ax = sns.violinplot(x="type1", y="total_stats",data=df, palette="muted")
找到非传说宝可梦但是种族值达到了的传说宝可梦级别的 最后我们就可以通过简单的过滤和排序来找到我们应该去捕捉的宝可梦了:
# 种族值大于570的,但是不是神兽的
df[(df.total_stats >= 570) & (df.is_legendary == 0)]['name'].head(10)
结论:
从结果上来看,我们平民宝可梦训练师应该考虑的Top10宝可梦应该是:妙蛙花,喷火龙,水箭龟,比雕,胡地,呆河马,耿鬼,袋兽,大甲,暴鲤龙。
三、其他分析
sns.jointplot("base_egg_steps", "experience_growth", data=df, height=5, ratio=3, color="g")
sns.jointplot("attack", "hp", data=df, kind="kde")
# 双系宝可梦数量统计
plt.subplots(figsize=(10, 10))sns.heatmap(df[df['type2']!='None'].groupby(['type1', 'type2']).size().unstack(),linewidths=1,annot=True,cmap="Blues"
)plt.xticks(rotation=35)
plt.show()
特别说明
本文章是参加阿里云Python训练营期间去的学习笔记