适配器设计模式

news/2024/11/28 4:47:53/

目录

前言:

 适配器原理与实现

 适配器模式的应用场景

1.封装有缺陷的接口

 2.统一多个类的接口设计

3.替换依赖的外部系统

4.兼容老版本接口

 5.适配不同格式的数据

代理、桥接、装饰器、适配器 4 种设计模式的区别

参考资料 


前言:

     适配器模式这个模式相对来说还是比较简单、好理解的,应用场景也很具体,总体上来讲比较好掌握。顾名思义其主要是为了做适配、为了兼容不同的接口。适配器模式有两种不同的实现模式,类适配器和对象适配器。有5种比较常见的应用场景。


 适配器原理与实现

         适配器模式顾名思义,这个模式就是用来做适配的,它将不兼容的接口转换为可兼容的接口,让原本由于接口不兼容而不能一起工作的类可以一起工作。对于这个模式,有一个经常被拿来解释它的例子,就是 USB 转接头充当适配器,把两种不兼容的接口,通过转接变得可以一起工作。

     原理很简单,我们再来看下它的代码实现。适配器模式有两种实现方式:类适配器和对象适配器。其中,类适配器使用继承关系来实现,对象适配器使用组合关系来实现。具体的代码实现如下所示。其中,ITarget 表示要转化成的接口定义。Adaptee(被适配者) 是一组不兼容 ITarget 接口定义的接口,Adaptor(适配者) Adaptee 转化成一组符合 ITarget 接口定义的接口


// 类适配器: 基于继承
public interface ITarget {void f1();void f2();void fc();
}public class Adaptee {public void fa() { //... }public void fb() { //... }public void fc() { //... }
}public class Adaptor extends Adaptee implements ITarget {public void f1() {super.fa();}public void f2() {//...重新实现f2()...}// 这里fc()不需要实现,直接继承自Adaptee,这是跟对象适配器最大的不同点
}// 对象适配器:基于组合
public interface ITarget {void f1();void f2();void fc();
}public class Adaptee {public void fa() { //... }public void fb() { //... }public void fc() { //... }
}public class Adaptor implements ITarget {private Adaptee adaptee;public Adaptor(Adaptee adaptee) {this.adaptee = adaptee;}public void f1() {adaptee.fa(); //委托给Adaptee}public void f2() {//...重新实现f2()...}public void fc() {adaptee.fc();}
}

  针对这两种实现方式,在实际的开发中,到底该如何选择使用哪一种呢?判断的标准主要有两个,一个是 Adaptee 接口的个数,另一个是 Adaptee ITarget 的契合程度。

  • 如果 Adaptee 接口并不多,那两种实现方式都可以。
  • 如果 Adaptee 接口很多,而且 Adaptee ITarget 接口定义大部分都相同,那我们推荐使用类适配器,因为 Adaptor 复用父类 Adaptee 的接口,比起对象适配器的实现方式,Adaptor 的代码量要少一些。
  • 如果 Adaptee 接口很多,而且 Adaptee ITarget 接口定义大部分都不相同,那我们推荐使用对象适配器,因为组合结构相对于继承更加灵活。

 适配器模式的应用场景

      一般来说,适配器模式可以看作一种补偿模式,用来补救设计上的缺陷。应用这种模式算是无奈之举。如果在设计初期,我们就能协调规避接口不兼容的问题,那这种模式就没有应用的机会了。

1.封装有缺陷的接口

       假设我们依赖的外部系统在接口设计方面有缺陷(比如包含大量静态方法),引入之后会影响到我们自身代码的可测试性。为了隔离设计上的缺陷,我们希望对外部系统提供的接口进行二次封装,抽象出更好的接口设计,这个时候就可以使用适配器模式了。


public class CD { //这个类来自外部sdk,我们无权修改它的代码//...public static void staticFunction1() { //... }public void uglyNamingFunction2() { //... }public void tooManyParamsFunction3(int paramA, int paramB, ...) { //... }public void lowPerformanceFunction4() { //... }
}// 使用适配器模式进行重构
public interface ITarget {void function1();void function2();void fucntion3(ParamsWrapperDefinition paramsWrapper);void function4();//...
}
// 注意:适配器类的命名不一定非得末尾带Adaptor
public class CDAdaptor extends CD implements ITarget {//...public void function1() {super.staticFunction1();}public void function2() {super.uglyNamingFucntion2();}public void function3(ParamsWrapperDefinition paramsWrapper) {super.tooManyParamsFunction3(paramsWrapper.getParamA(), ...);}public void function4() {//...reimplement it...}
}

 2.统一多个类的接口设计

      某个功能的实现依赖多个外部系统(或者说类)。通过适配器模式,将它们的接口适配为统一的接口定义,然后我们就可以使用多态的特性来复用代码逻辑。具体我还是举个例子来解释一下。

       假设我们的系统要对用户输入的文本内容做敏感词过滤,为了提高过滤的召回率,我们引入了多款第三方敏感词过滤系统,依次对用户输入的内容进行过滤,过滤掉尽可能多的敏感词。但是,每个系统提供的过滤接口都是不同的。这就意味着我们没法复用一套逻辑来调用各个系统。这个时候,我们就可以使用适配器模式,将所有系统的接口适配为统一的接口定义,这样我们可以复用调用敏感词过滤的代码。3


public class ASensitiveWordsFilter { // A敏感词过滤系统提供的接口//text是原始文本,函数输出用***替换敏感词之后的文本public String filterSexyWords(String text) {// ...}public String filterPoliticalWords(String text) {// ...} 
}public class BSensitiveWordsFilter  { // B敏感词过滤系统提供的接口public String filter(String text) {//...}
}public class CSensitiveWordsFilter { // C敏感词过滤系统提供的接口public String filter(String text, String mask) {//...}
}// 未使用适配器模式之前的代码:代码的可测试性、扩展性不好
public class RiskManagement {private ASensitiveWordsFilter aFilter = new ASensitiveWordsFilter();private BSensitiveWordsFilter bFilter = new BSensitiveWordsFilter();private CSensitiveWordsFilter cFilter = new CSensitiveWordsFilter();public String filterSensitiveWords(String text) {String maskedText = aFilter.filterSexyWords(text);maskedText = aFilter.filterPoliticalWords(maskedText);maskedText = bFilter.filter(maskedText);maskedText = cFilter.filter(maskedText, "***");return maskedText;}
}// 使用适配器模式进行改造
public interface ISensitiveWordsFilter { // 统一接口定义String filter(String text);
}public class ASensitiveWordsFilterAdaptor implements ISensitiveWordsFilter {private ASensitiveWordsFilter aFilter;public String filter(String text) {String maskedText = aFilter.filterSexyWords(text);maskedText = aFilter.filterPoliticalWords(maskedText);return maskedText;}
}
//...省略BSensitiveWordsFilterAdaptor、CSensitiveWordsFilterAdaptor...// 扩展性更好,更加符合开闭原则,如果添加一个新的敏感词过滤系统,
// 这个类完全不需要改动;而且基于接口而非实现编程,代码的可测试性更好。
public class RiskManagement { private List<ISensitiveWordsFilter> filters = new ArrayList<>();public void addSensitiveWordsFilter(ISensitiveWordsFilter filter) {filters.add(filter);}public String filterSensitiveWords(String text) {String maskedText = text;for (ISensitiveWordsFilter filter : filters) {maskedText = filter.filter(maskedText);}return maskedText;}
}

3.替换依赖的外部系统

 当我们把项目中依赖的一个外部系统替换为另一个外部系统的时候,利用适配器模式,可以减少对代码的改动。具体的代码示例如下所示:


// 外部系统A
public interface IA {//...void fa();
}
public class A implements IA {//...public void fa() { //... }
}
// 在我们的项目中,外部系统A的使用示例
public class Demo {private IA a;public Demo(IA a) {this.a = a;}//...
}
Demo d = new Demo(new A());// 将外部系统A替换成外部系统B
public class BAdaptor implemnts IA {private B b;public BAdaptor(B b) {this.b= b;}public void fa() {//...b.fb();}
}
// 借助BAdaptor,Demo的代码中,调用IA接口的地方都无需改动,
// 只需要将BAdaptor如下注入到Demo即可。
Demo d = new Demo(new BAdaptor(new B()));

4.兼容老版本接口

 在做版本升级的时候,对于一些要废弃的接口,我们不直接将其删除,而是暂时保留,并且标注为 deprecated,并将内部实现逻辑委托为新的接口实现。这样做的好处是,让使用它的项目有个过渡期,而不是强制进行代码修改。这也可以粗略地看作适配器模式的一个应用场景。


public class Collections {public static Emueration emumeration(final Collection c) {return new Enumeration() {Iterator i = c.iterator();public boolean hasMoreElments() {return i.hashNext();}public Object nextElement() {return i.next():}}}
}

 5.适配不同格式的数据

 前面我们讲到,适配器模式主要用于接口的适配,实际上,它还可以用在不同格式的数据之间的适配。比如,把从不同征信系统拉取的不同格式的征信数据,统一为相同的格式,以方便存储和使用。再比如,Java 中的 Arrays.asList() 也可以看作一种数据适配器,将数组类型的数据转化为集合容器类型。


List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");

代理、桥接、装饰器、适配器 4 种设计模式的区别

      代理、桥接、装饰器、适配器,这 4 种模式是比较常用的结构型设计模式。它们的代码结构非常相似。笼统来说,它们都可以称为 Wrapper 模式,也就是通过 Wrapper 类二次封装原始类。

     尽管代码结构相似,但这 4 种设计模式的用意完全不同,也就是说要解决的问题、应用场景不同,这也是它们的主要区别。

这里我就简单说一下它们之间的区别。

代理模式:代理模式在不改变原始类接口的条件下,为原始类定义一个代理类,主要目的是控制访问,而非加强功能,这是它跟装饰器模式最大的不同。

桥接模式:桥接模式的目的是将接口部分和实现部分分离,从而让它们可以较为容易、也相对独立地加以改变。

装饰器模式:装饰者模式在不改变原始类接口的情况下,对原始类功能进行增强,并且支持多个装饰器的嵌套使用。

适配器模式:适配器模式是一种事后的补救策略。适配器提供跟原始类不同的接口,而代理模式、装饰器模式提供的都是跟原始类相同的接口。

参考资料 

51 | 适配器模式:代理、适配器、桥接、装饰,这四个模式有何区别?-极客时间


http://www.ppmy.cn/news/41127.html

相关文章

Ae:表达式应用基础

通过几个最常用的变量及函数&#xff08;方法&#xff09;来了解 Ae 表达式。有关表达式语言语法基础&#xff0c;请参阅&#xff1a;《Ae&#xff1a;表达式语法基础》◆ ◆ ◆时间相关time返回合成的当前时间值&#xff0c;以秒为单位。比如&#xff0c;当处于 1 秒的时间点…

深度学习中常用的权重初始化方式

最近看论文&#xff0c;看到不少论文说明他们的卷积的权重初始化方式为Kaiming Uniform&#xff0c;我就好奇这是个什么东西&#xff0c;然后一查才知道&#xff0c;这是一种权重初始化方式&#xff0c;并且是Pytorch默认的一种初始化方式&#xff0c;那就想&#xff0c;这有啥…

插值,卷积,反卷积

1.为什么插值可以越插越小&#xff0c;一般不是越插越大吗 插值的结果取决于所用的插值方法和数据的分布情况。在某些情况下&#xff0c;插值可以越插越小。 例如&#xff0c;如果我们使用插值方法来逼近一段连续函数&#xff0c;且插值点越来越密集&#xff0c;那么插值误差…

Qt Quick - 分隔器综述

Qt Quick - 分隔器综述一、概述二、MenuSeparator 控件1. 用法&#xff1a;三、ToolSeparator 控件1. 用法一、概述 Qt Quick Controls 提供了多种分隔符&#xff0c;其实就是分割一下MenuBar和ToolBar里面的内容。 控件功能MenuSeparator将菜单中的一组项目与相邻项目分开To…

一种供水系统物联网监测系统

1.1供水系统 1.1.1监测范围选择依据 &#xff08;1&#xff09;管网老化区域管网 管网建设年代久远&#xff0c;通常管网发生破损问题较大&#xff0c;根据管网本身属性和历史发生事件的统计分析&#xff0c;结合数理统计&#xff0c;优先选择管网老化区域的管段所在区域进行…

SQL中部分函数使用方法

一、SQL中 decode() 函数使用介绍 decode(skaccnum.def4,~,0,skaccnum.def4) 这是一个 Oracle SQL 中的 DECODE 函数的使用示例。DECODE 函数通常用于根据某些条件返回不同的值。在这个例子中&#xff0c;DECODE 函数的第一个参数是 skaccnum.def4&#xff0c;第二个参数是 ~&a…

如何提升智能文档处理识别精度?合合信息“版面分析”实现新突破

春季是繁忙的播种季&#xff0c;学生党迎来了开学季和紧张的研究生复试&#xff0c;职场人士也需要处理新签业务带来的大量不同类型的文件&#xff0c;比如合同、发票、档案等。这些文件在被拍照、扫描成电子文档的过程中&#xff0c;时常存在漏字、错位现象。究其原因&#xf…

OpenAI-ChatGPT最新官方接口《AI绘图》全网最详细中英文实用指南和教程,助你零基础快速轻松掌握全新技术(二)(附源码)

ChatGPT-AI绘图Image generation Beta 图片生成前言IntroductionUsageGenerationsEdits 编辑VariationsLanguage-specific tips 特定语言提示Python 语言Using in-memory image data 使用内存中的图像数据Operating on image data 操作图像数据Error handlingNode.js 语言Using…