Redis中的BigKey问题:排查与解决思路

news/2025/3/14 21:36:50/

本文已收录至Github,推荐阅读 👉 Java随想录

文章目录

    • 摘要
    • Big Key问题介绍
    • Big Key问题排查
      • 使用BIGKEYS命令
        • Debug Object
        • memory usage
      • redis-rdb-tools
    • Big Key问题解决思路
      • 分割大key
      • 对象压缩
      • 直接删除
    • 总结

摘要

Redis是一款性能强劲的内存数据库,但是在使用过程中,我们可能会遇到Big Key问题,这个问题就是Redis中某个key的value过大,所以Big Key问题本质是Big Value问题,导致Redis的性能下降或者崩溃。本文将向大家介绍如何排查和解决这个问题。

Big Key问题介绍

在Redis中,每个key都有一个对应的value,如果某个key的value过大,就会导致Redis的性能下降或者崩溃,比玄学更玄学,因为Redis需要将大key全部加载到内存中,这会占用大量的内存空间,会降低Redis的响应速度,这个问题被称为Big Key问题。不要小看这个问题,它可是能让你的Redis瞬间变成“乌龟”,由于Redis单线程的特性,操作Big Key的通常比较耗时,也就意味着阻塞Redis可能性越大,这样会造成客户端阻塞或者引起故障切换,有可能导致“慢查询”。

一般而言,下面这两种情况被称为大 key:

  • String 类型的 key 对应的value超过 10 MB。
  • list、set、hash、zset等集合类型,集合元素个数超过 5000个。

以上对 Big Key 的判断标准并不是唯一,只是一个大体的标准。在实际业务开发中,对 Big Key的判断是需要根据具体的使用场景做不同的判断。比如操作某个 key 导致请求响应时间变慢,那么这个 key 就可以判定成 Big Key。

在Redis中,大key通常是由以下几种原因导致的

  • 对象序列化后的大小过大
  • 存储大量数据的容器,如set、list等
  • 大型数据结构,如bitmap、hyperloglog等

如果不及时处理这些大key,它们会逐渐消耗Redis服务器的内存资源,最终导致Redis崩溃。

Big Key问题排查

当出现Redis性能急剧下降的情况时,很可能是由于存在大key导致的。在排除大key问题时,可以考虑采取以下几种方法:

使用BIGKEYS命令

Redis自带的 BIGKEYS 命令可以查询当前Redis中所有key的信息,对整个数据库中的键值对大小情况进行统计分析,比如说,统计每种数据类型的键值对个数以及平均大小。此外,这个命令执行后,会输出每种数据类型中最大的 bigkey 的信息,对于 String 类型来说,会输出最大 bigkey 的字节长度,对于集合类型来说,会输出最大 bigkey 的元素个数

BIGKEYS命令会扫描整个数据库,这个命令本身会阻塞Redis,找出所有的大键,并将其以一个列表的形式返回给客户端。

命令格式如下:

$ redis-cli --bigkeys

返回示例如下:

# Scanning the entire keyspace to find biggest keys as well as
# average sizes per key type.  You can use -i 0.1 to sleep 0.1 sec
# per 100 SCAN commands (not usually needed).[00.00%] Biggest string found so far 'a' with 3 bytes
[05.14%] Biggest list   found so far 'b' with 100004 items
[35.77%] Biggest string found so far 'c' with 6 bytes
[73.91%] Biggest hash   found so far 'd' with 3 fields-------- summary -------Sampled 506 keys in the keyspace!
Total key length in bytes is 3452 (avg len 6.82)Biggest string found 'c' has 6 bytes
Biggest   list found 'b' has 100004 items
Biggest   hash found 'd' has 3 fields504 strings with 1403 bytes (99.60% of keys, avg size 2.78)
1 lists with 100004 items (00.20% of keys, avg size 100004.00)
0 sets with 0 members (00.00% of keys, avg size 0.00)
1 hashs with 3 fields (00.20% of keys, avg size 3.00)
0 zsets with 0 members (00.00% of keys, avg size 0.00)

需要注意的是,由于BIGKEYS命令需要扫描整个数据库,所以它可能会对Redis实例造成一定的负担。在执行这个命令之前,请确保您的Redis实例有足够的资源来处理它,建议在从节点执行

Debug Object

如果我们找到了Big Key,就需要对其进行进一步的分析。我们可以使用命令debug object key查看某个key的详细信息,包括该key的value大小等。这时候你就可以“窥探”Redis的内部,看看到底是哪个key太大了。

Debug Object 命令是一个调试命令,当 key 存在时,返回有关信息。 当 key 不存在时,返回一个错误。

redis 127.0.0.1:6379> DEBUG OBJECT key
Value at:0xb6838d20 refcount:1 encoding:raw serializedlength:9 lru:283790 lru_seconds_idle:150redis 127.0.0.1:6379> DEBUG OBJECT key
(error) ERR no such key

serializedlength表示key对应的value序列化之后的字节数

memory usage

在Redis4.0之前,只能通过DEBUG OBJECT命令估算key的内存使用(字段serializedlength),但DEBUG OBJECT命令是有误差的。

4.0版本及以上,我们可以使用memory usag命令。

memory usage命令使用非常简单,直接按memory usage key名字;如果当前key存在,则返回key的value实际使用内存估算值;如果key不存在,则返回nil。

127.0.0.1:6379> set k1 value1
OK
127.0.0.1:6379> memory usage k1    //这里k1 value占用57字节内存
(integer) 57
127.0.0.1:6379> memory usage aaa  // aaa键不存在,返回nil.
(nil)

对于除String类型之外的类型,memory usage命令采用抽样的方式,默认抽样5个元素,所以计算是近似值,我们也可以指定抽样的个数。

示例说明:生成一个100w个字段的hash键:hkey,每字段的value长度是从1~1024字节的随机值。

127.0.0.1:6379> hlen hkey    // hkey有100w个字段,每个字段的value长度介于1~1024个字节
(integer) 1000000
127.0.0.1:6379> MEMORY usage hkey   //默认SAMPLES为5,分析hkey键内存占用521588753字节
(integer) 521588753
127.0.0.1:6379> MEMORY usage hkey SAMPLES  1000 //指定SAMPLES为1000,分析hkey键内存占用617977753字节
(integer) 617977753
127.0.0.1:6379> MEMORY usage hkey SAMPLES  10000 //指定SAMPLES为10000,分析hkey键内存占用624950853字节
(integer) 624950853

要想获取key较精确的内存值,就指定更大抽样个数。但是抽样个数越大,占用cpu时间分片就越大。

redis-rdb-tools

redis-rdb-tools 是一个 python 的解析 rdb 文件的工具,在分析内存的时候,我们主要用它生成内存快照。可以把 rdb 快照文件生成 CSV 或 JSON 文件,也可以导入到 MySQL 生成报表来分析。

使用 PYPI 安装

pip install rdbtools

生成内存快照

rdb -c memory dump.rdb > memory.csv

在生成的 CSV 文件中有以下几列:

  • database key在Redis的db
  • type key类型
  • key key值
  • size_in_bytes key的内存大小
  • encoding value的存储编码形式
  • num_elements key中的value的个数
  • len_largest_element key中的value的长度

可以在MySQL中新建表然后导入进行分析,然后可以直接通过SQL语句进行查询分析。

CREATE TABLE `memory` (`database` int(128) DEFAULT NULL,`type` varchar(128) DEFAULT NULL,`KEY` varchar(128),`size_in_bytes` bigint(20) DEFAULT NULL,`encoding` varchar(128) DEFAULT NULL,`num_elements` bigint(20) DEFAULT NULL,`len_largest_element` varchar(128) DEFAULT NULL,PRIMARY KEY (`KEY`));

例子:查询内存占用最高的3个 key

mysql> SELECT * FROM memory ORDER BY size_in_bytes DESC LIMIT 3;
+----------+------+-----+---------------+-----------+--------------+---------------------+
| database | type | key | size_in_bytes | encoding  | num_elements | len_largest_element |
+----------+------+-----+---------------+-----------+--------------+---------------------+
|        0 | set  | k1  |        624550 | hashtable |        50000 | 10                  |
|        0 | set  | k2  |        420191 | hashtable |        46000 | 10                  |
|        0 | set  | k3  |        325465 | hashtable |        38000 | 10                  |
+----------+------+-----+---------------+-----------+--------------+---------------------+
3 rows in set (0.12 sec)

Big Key问题解决思路

当发现存在大key问题时,我们需要及时采取措施来解决这个问题。下面列出几种可行的解决思路:

分割大key

将Big Key拆分成多个小的key。这个方法比较简单,但是需要修改应用程序的代码。就像是把一个大蛋糕切成小蛋糕一样,有点费力,但是可以解决问题。

或者尝试将Big Key转换成Redis的数据结构。例如,将Big Key转换成Hash,List或者Set等数据结构。

对象压缩

如果大key的大小主要是由于对象序列化后的体积过大,我们可以考虑使用压缩算法来减小对象的大小。Redis自身支持多种压缩算法,例如LZF、Snappy等。

直接删除

如果你使用的是Redis 4.0+的版本,可以直接使用 unlink命令去异步删除。4.0以下的版本 可以考虑使用 scan ,分批次删除。

无论采用哪种方法,都需要注意以下几点:

  1. 避免使用过大的value。如果需要存储大量的数据,可以将其拆分成多个小的value。就像是吃饭一样,一口一口的吃,不要贪多嚼不烂。

  2. 避免使用不必要的数据结构。例如,如果只需要存储一个字符串,就不要使用Hash或者List等数据结构。

  3. 定期清理过期的key。如果Redis中存在大量的过期key,就会导致Redis的性能下降。就像是家里的垃圾,需要定期清理。

  4. 对象压缩

总结

Big Key问题是Redis中常见的问题之一,但是通过合理的排查和解决思路,我们可以有效地避免这个问题。在使用Redis时,需要注意避免使用过大的value和不必要的数据结构,以及定期清理过期的key。


http://www.ppmy.cn/news/39422.html

相关文章

URL编码和解析

1.什么是URL? URL(Uniform Resource Locator,统一资源定位符)是互联网上标准资源的地址,互联网上每个文件(即资源)都有一个唯一的URL,它包含了文件的位置以及浏览器处理方式等信息。 URL 标准格式 通常而言,我们所熟…

数据处理-4.现代企业的核心公式

现代企业核心公式:收入流量付费率 ARPU ARPU即Average Revenue Per User,指的是一个时期内(通常为一个月或一年)电信运营企业平均每个用户贡献的通信业务收入,其单位为元/户。从计算的角度看,ARPU值的大小取决于两个因素&#xff…

Android之制作App的图标

在过去,Android应用程序的图标都是应该放到相应的分辨率的mipmap目录下,不过从Android8.0开始,Google已经不再建议使用单一的一张图片来作为应用程序的图标,而是应该使用前景和背景分离的图标设计方式。具体来讲,应用程…

【python设计模式】18、仲裁者模式

哲学思想: 仲裁者模式是一种软件设计模式,它的哲学思想是将对象之间的交互行为转移到第三方对象,以避免直接耦合。该模式的核心思想是:当对象之间需要通信时,它们不直接相互交互,而是通过一个中介者对象来…

电脑+浏览器——黑色护眼

电脑浏览器——黑色护眼电脑办公Excel主题,黑色表格,黑色背景电脑办公 Excel https://www.kewenba.com/12562.html 主题,黑色 表格,黑色背景 【页面布局】-【背景】,然后选择一张黑色图片

web基础

web基础 与http 域名:由于IP地址不易记忆,域名用来代替IP地址, (DNS)服务与配置:先在本地hosts里去找,然后在本地域名服务器递归查找,本地域名服务器在一级二级按域名长度迭代查找后…

STM32F4_串口通信详解

目录 1. 串口相关介绍及使用 1.1 串口设置的一般步骤: 1.1.1 串口时钟和GPIO时钟使能 1.1.2 设置引脚复用器映射 1.1.3 GPIO端口模式设置 1.1.4 串口参数初始化 1.1.5 开启中断并且初始化NVIC,使能中断 1.1.6 使能串口 1.1.7 串口数据发送与接收…

java基础之抽象类与接口

文章目录1.抽象方法和抽象类2.抽象类的作用3.接口4.接口和抽象类的异同5.面向接口编程1.抽象方法和抽象类 抽象方法和抽象类必须使用abstract修饰符来定义,有抽象方法的类只能被定义成抽象类,抽象类里可以没有抽象方法。 抽象类必须使用abstract修饰符来…