Spark3.3.0的DataFrame及Spark SQL编程的性能对比【单机模式下】

news/2024/11/17 22:22:30/

Spark3.3.0的DataFrame及Spark SQL编程的性能对比【单机模式下】

前言

Spark3.3.0较老早的2.4.0有极大的性能优化,尤其是对SQL做了大量的优化【数据倾斜等】,恰好近期遇到一些性能问题,特意写个Demo测试下DataFrame和Spark SQL在获取到相同结果时的性能表现。

机器配置

参照:https://lizhiyong.blog.csdn.net/article/details/127827522

主板:x99f8d
CPU:e5 2696v3 *2 【36核72线程】
内存条:DDR4 ECC 32G *8 【256G】
显卡:RTX A4000 【16G显存】
散热器:ta 120ex *2 【单风扇】
SSD:MX500 2T *2 【4T】
HDD:NAS拆的酷狼 4T
电源:GX1000 【1000W】
机箱:614PC 【标配2风扇+套装3风扇】
显示器:27寸 【4K】
键鼠:笔记本淘汰的一套 【USB口】
网卡:主板自带的网卡

比对原理

模拟SQL Boy们最喜欢的join操作,构造2个1e数据量的数据集。简单起见,主键id就是0->1e,字段内容就是0->1w,做inner join【其实主键相同的时候,各种join,比如 left join 、right join 、full join 都没啥关系】获取到新数据集【这么做是故意有shuffle操作】,再对宽表做遍历,就可以涵盖数仓开发中最常见的计算。

通过记录的时间戳,即可判断出性能优劣【毫无疑问,耗时短的性能更好】。

性能比对

Scala代码

package day20221215import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.slf4j.Loggerobject SparkMock100wScala {case class Data1(id: String, comment1: String)def main(args: Array[String]): Unit = {val spark: SparkSession = SparkSession.builder().appName("SparkMock100wScala").master("local[*]").enableHiveSupport().getOrCreate()import org.apache.spark.sql._import spark.implicits._val logger: Logger = org.slf4j.LoggerFactory.getLogger(this.getClass)logger.info("Spark构建完毕")val num: Long = 10000 * 10000val ds1: Dataset[Data1] = spark.range(num).map(row => { //生成id 0->10w的DataSetData1(row.toString(), String.valueOf(Math.random() * 10000).split("\\.")(0)) //构造随机数,转case class})val ds2: Dataset[Data1] = spark.range(num).map(row => { //生成id 0->10w的DataSetData1(row.toString(), String.valueOf(Math.random() * 10000).split("\\.")(0)) //构造随机数,转case class})//    val structType: StructType = StructType(List(//      StructField("name", DataTypes.StringType),//      StructField("age", DataTypes.StringType)//    ))//spark.createDataFrame(ds1.toDF().rdd,structType)val df1: DataFrame = ds1.toDF()var df2: DataFrame = ds2.toDF()df2 = df2.withColumn("comment2", df2.col("comment1")).drop("comment1")df1.cache()df2.cache()//df1.show(15)//df2.show(15)val df_startTime: Long = System.currentTimeMillis()val df3: DataFrame = df1.join(df2, Seq("id"), "inner") //根据100000000个id主键去inner join//df3.toDF().show(15)val count1: Long = df3.filter("comment1>comment2").count()val count2: Long = df3.filter("comment1<comment2").count()val count3: Long = df3.filter("comment1=comment2").count()val df_stopTime: Long = System.currentTimeMillis()val count4: Long = count1 + count2 + count3val df_time: Long = df_stopTime - df_startTimeprintln("comment1>comment2的个数:" + count1)println("comment1<comment2的个数:" + count2)println("comment1=comment2的个数:" + count3)println("总数:" + count4)println("DataFrame耗时:" + df_time)logger.info("DataFrame运算完毕,耗时:" + df_time)logger.error("暂停10s")df1.createTempView("tmp1")df2.createTempView("tmp2")Thread.sleep(10 * 1000)val sql1_startTime: Long = System.currentTimeMillis()val sql1: String ="""selectcol1,col2,col3,col1+col2+col3 as col4from(selectsum(case when comment1>comment2 then 1 else 0 end) as col1,sum(case when comment1<comment2 then 1 else 0 end) as col2,sum(case when comment1=comment2 then 1 else 0 end) as col3from(selectt1.id,t1.comment1,t2.comment2fromtmp1 t1inner jointmp2 t2on t1.id=t2.id) t3)t4;"""spark.sql(sql1).show()val sql1_stopTime: Long = System.currentTimeMillis()val sql1_time: Long = sql1_stopTime - sql1_startTimeprintln("Spark SQL1耗时:" + sql1_time)Thread.sleep(10 * 1000)val sql2_startTime: Long = System.currentTimeMillis()val sql2: String ="""
selectcol1,col2,col3,col1+col2+col3 as col4
from(
selectsum(col1) as col1,sum(col2) as col2,sum(col3) as col3
from(
selectcount(1) as col1,0 as col2,0 as col3
fromtmp1 t1
inner jointmp2 t2ont1.id=t2.id
wheret1.comment1>t2.comment2union allselect0 as col1,count(1) as col2,0 as col3
fromtmp1 t1
inner jointmp2 t2ont1.id=t2.id
wheret1.comment1<t2.comment2union allselect0 as col1,0 as col2,count(1) as col3
fromtmp1 t1
inner jointmp2 t2ont1.id=t2.id
wheret1.comment1=t2.comment2
) t3
) t4
;"""spark.sql(sql2).show()val sql2_stopTime: Long = System.currentTimeMillis()val sql2_time: Long = sql2_stopTime - sql2_startTimeprintln("Spark SQL2耗时:" + sql2_time)logger.error("暂停1000s")Thread.sleep(1000 * 1000)spark.close()}
}

整体还是相当简单的。而2句SQL也模拟了资深SQL Boy和肤浅的SQL Boy们常用的写法。

数据样例

    //df1.show(15)//df2.show(15)/** 每次都会变,但是2个DataFrame不同* +---+--------+* | id|comment1|* +---+--------+* |  0|    5452|* |  1|    6119|* |  2|      11|* |  3|     115|* |  4|    9458|* |  5|    9101|* |  6|    1448|* |  7|    9956|* |  8|    3214|* |  9|    3464|* | 10|    9558|* | 11|    1278|* | 12|    1922|* | 13|    6252|* | 14|    1360|* +---+--------+* only showing top 15 rows* */

很容易理解,这2个每次都会变化并且值一定不同的DataFrame就是长这样。

    //df3.toDF().show(15)//    +---+--------+--------+//    | id|comment1|comment2|//    +---+--------+--------+//    |  0|     995|    9804|//    |  1|    2763|    2753|//    |  2|    1117|    1076|//    |  3|    2024|    4121|//    |  4|     975|    4454|//    |  5|    4556|     593|//    |  6|    7424|    1260|//    |  7|     346|    8986|//    |  8|    9750|    7065|//    |  9|    1323|     215|//    | 10|    5932|    1002|//    | 11|    7919|    8089|//    | 12|    1397|      16|//    | 13|    5119|    8322|//    | 14|    9728|    7019|//    +---+--------+--------+//    only showing top 15 rows

做完Join拉宽后长这样,也没啥好奇怪的。

运算过程

在这里插入图片描述

本来打算玩玩100w,发现数据量还是太少。故选择了1e体量。当数据量比较夸张且不能全部加载到内存时,就一定会有shuffle的情况。可以发现SSD跑Shuffle性能比HDD好很多。

Web UI

http://127.0.0.1:4040/

任务相当简单,其实也没太多好看的内容。

在这里插入图片描述

调整CPU核数

调整可调用的core时,CPU占用率会有些许改变:

在这里插入图片描述

也会影响到Shuffle。

Task情况

在这里插入图片描述

由于是串行,Catalyst优化器会做一些优化,可以看到部分Task被优化了。。。

Shuffle情况

在这里插入图片描述

可以看出Shuffle的数据量很大。

GC情况

在这里插入图片描述

可以看到默认情况下,Win10环境,local模式的Spark总共只分配了16G内存,其中3.7G用于存储【由于cache算子的action操作,其实都是堆内存】,峰值11.5G内存用于运算。Core也是双路e5 2696v3的36核,没啥子毛病。RDD块儿72个,正好是线程数,也没啥毛病。

峰值情况

在这里插入图片描述

在最后一个运算【也就是sql2】时,硬盘IO暴增。

比对结果

第一轮比对

第一轮比对,采用local[4],测试结果如下:

comment1>comment2的个数:49999895
comment1<comment2的个数:49990073
comment1=comment2的个数:10032
总数:100000000
DataFrame耗时:121412
22/12/15 23:48:49 INFO SparkMock100wScala$: DataFrame运算完毕,耗时:121412
22/12/15 23:48:49 ERROR SparkMock100wScala$: 暂停10s+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49999895|49990073|10032|100000000|
+--------+--------+-----+---------+Spark SQL1耗时:20726+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49999895|49990073|10032|100000000|
+--------+--------+-----+---------+Spark SQL2耗时:53207
22/12/15 23:50:23 ERROR SparkMock100wScala$: 暂停1000s

由于cache算子的action操作,保证了Scala的DataFrame算子操作和2个Spark SQL运算的DataFrame一致。可以看到获取到的结果也是一致的。DataFrame运行了121s,sql1运行了20s,sql2运行了53s。

第二轮比对

第二轮比对,采用local[*],测试结果如下:

comment1>comment2的个数:49991501
comment1<comment2的个数:49998452
comment1=comment2的个数:10047
总数:100000000
DataFrame耗时:132845
22/12/16 00:03:16 INFO SparkMock100wScala$: DataFrame运算完毕,耗时:132845
22/12/16 00:03:16 ERROR SparkMock100wScala$: 暂停10s+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49991501|49998452|10047|100000000|
+--------+--------+-----+---------+Spark SQL1耗时:20541+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49991501|49998452|10047|100000000|
+--------+--------+-----+---------+Spark SQL2耗时:52992
22/12/16 00:04:50 ERROR SparkMock100wScala$: 暂停1000s

可以看到,虽然分配的CPU算力更多了,但是可用RAM还是默认的16G,瓶颈就在硬盘IO上,故结果与第一轮一致。

第三轮比对

从Web UI看到存在Task有skip的情况【被优化掉了】。所以上述情况并不是一定十分准确。当屏蔽第一部分的DataFrame运算后,sql1就被打回原形了:

+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49998005|49991893|10102|100000000|
+--------+--------+-----+---------+Spark SQL1耗时:96027+--------+--------+-----+---------+
|    col1|    col2| col3|     col4|
+--------+--------+-----+---------+
|49998005|49991893|10102|100000000|
+--------+--------+-----+---------+Spark SQL2耗时:54983
22/12/16 00:19:46 ERROR SparkMock100wScala$: 暂停1000s

可以看出sql1其实需要96s才能跑完,从结果来看比DataFrame运算有优势。但是DSL方式其实提交了3个运算任务,而sql1只有1个。

从另一方面,可以看出资深SQL Boy写的Spark SQL任务在Spark3.3.0Catalyst优化器加持下,性能有可能超越肤浅的程序猿。Spark3.3.0性能较之前强太多了。

sql2还是需要54s才能跑完,但是这个不一定准确。

第四轮对比

+--------+--------+----+---------+
|    col1|    col2|col3|     col4|
+--------+--------+----+---------+
|49995581|49994453|9966|100000000|
+--------+--------+----+---------+Spark SQL2耗时:114075
22/12/16 00:22:39 ERROR SparkMock100wScala$: 暂停1000s

单独运算sql2,可以看到耗时需要114s,和DataFrame运算相比都半斤八两。比起sql1的96s还是要慢一些。可以看出同样是SQL Boy,资深有资深的道理。

Log

22/12/16 00:01:44 INFO TaskSetManager: Starting task 31.0 in stage 1.0 (TID 67) (DESKTOP-VRV0NDO, executor driver, partition 31, PROCESS_LOCAL, 4567 bytes) taskResourceAssignments Map()
22/12/16 00:01:44 INFO TaskSetManager: Finished task 20.0 in stage 0.0 (TID 20) in 38681 ms on DESKTOP-VRV0NDO (executor driver) (32/36)
22/12/16 00:01:44 INFO Executor: Running task 31.0 in stage 1.0 (TID 67)
22/12/16 00:01:44 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 2242 bytes result sent to driver
22/12/16 00:01:44 INFO TaskSetManager: Starting task 32.0 in stage 1.0 (TID 68) (DESKTOP-VRV0NDO, executor driver, partition 32, PROCESS_LOCAL, 4567 bytes) taskResourceAssignments Map()
22/12/16 00:01:44 INFO Executor: Running task 32.0 in stage 1.0 (TID 68)
22/12/16 00:01:44 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 38763 ms on DESKTOP-VRV0NDO (executor driver) (33/36)
22/12/16 00:01:44 INFO Executor: Finished task 4.0 in stage 0.0 (TID 4). 2242 bytes result sent to driver
22/12/16 00:01:44 INFO TaskSetManager: Starting task 33.0 in stage 1.0 (TID 69) (DESKTOP-VRV0NDO, executor driver, partition 33, PROCESS_LOCAL, 4567 bytes) taskResourceAssignments Map()
22/12/16 00:01:44 INFO Executor: Running task 33.0 in stage 1.0 (TID 69)
22/12/16 00:01:44 INFO TaskSetManager: Finished task 4.0 in stage 0.0 (TID 4) in 39418 ms on DESKTOP-VRV0NDO (executor driver) (34/36)
22/12/16 00:01:44 INFO Executor: Finished task 22.0 in stage 0.0 (TID 22). 2242 bytes result sent to driver
22/12/16 00:01:44 INFO TaskSetManager: Starting task 34.0 in stage 1.0 (TID 70) (DESKTOP-VRV0NDO, executor driver, partition 34, PROCESS_LOCAL, 4567 bytes) taskResourceAssignments Map()
22/12/16 00:01:44 INFO Executor: Running task 34.0 in stage 1.0 (TID 70)
22/12/16 00:01:44 INFO TaskSetManager: Finished task 22.0 in stage 0.0 (TID 22) in 39511 ms on DESKTOP-VRV0NDO (executor driver) (35/36)
22/12/16 00:01:45 INFO Executor: Finished task 3.0 in stage 0.0 (TID 3). 2242 bytes result sent to driver
22/12/16 00:01:45 INFO TaskSetManager: Starting task 35.0 in stage 1.0 (TID 71) (DESKTOP-VRV0NDO, executor driver, partition 35, PROCESS_LOCAL, 4567 bytes) taskResourceAssignments Map()
22/12/16 00:01:45 INFO Executor: Running task 35.0 in stage 1.0 (TID 71)
22/12/16 00:01:45 INFO TaskSetManager: Finished task 3.0 in stage 0.0 (TID 3) in 39536 ms on DESKTOP-VRV0NDO (executor driver) (36/36)
22/12/16 00:01:45 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
22/12/16 00:01:45 INFO DAGScheduler: ShuffleMapStage 0 (count at SparkMock100wScala.scala:109) finished in 39.893 s
22/12/16 00:01:45 INFO DAGScheduler: looking for newly runnable stages
22/12/16 00:01:45 INFO DAGScheduler: running: Set(ShuffleMapStage 1)
22/12/16 00:01:45 INFO DAGScheduler: waiting: Set()
22/12/16 00:01:45 INFO DAGScheduler: failed: Set()
22/12/16 00:01:58 INFO MemoryStore: Block rdd_14_0 stored as values in memory (estimated size 49.1 MiB, free 13.9 GiB)
22/12/16 00:01:58 INFO BlockManagerInfo: Added rdd_14_0 in memory on DESKTOP-VRV0NDO:60638 (size: 49.1 MiB, free: 13.9 GiB)
22/12/16 00:01:59 INFO MemoryStore: Block rdd_14_2 stored as values in memory (estimated size 50.2 MiB, free 13.9 GiB)
22/12/16 00:01:59 INFO BlockManagerInfo: Added rdd_14_2 in memory on DESKTOP-VRV0NDO:60638 (size: 50.2 MiB, free: 13.9 GiB)
22/12/16 00:02:00 INFO MemoryStore: Block rdd_14_5 stored as values in memory (estimated size 52.8 MiB, free 13.8 GiB)
22/12/16 00:02:00 INFO BlockManagerInfo: Added rdd_14_5 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.8 GiB)
22/12/16 00:02:00 INFO MemoryStore: Block rdd_14_4 stored as values in memory (estimated size 52.8 MiB, free 13.8 GiB)
22/12/16 00:02:00 INFO BlockManagerInfo: Added rdd_14_4 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.8 GiB)
22/12/16 00:02:00 INFO MemoryStore: Block rdd_14_6 stored as values in memory (estimated size 52.8 MiB, free 13.7 GiB)
22/12/16 00:02:00 INFO BlockManagerInfo: Added rdd_14_6 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.7 GiB)
22/12/16 00:02:00 INFO MemoryStore: Block rdd_14_1 stored as values in memory (estimated size 50.2 MiB, free 13.7 GiB)
22/12/16 00:02:00 INFO BlockManagerInfo: Added rdd_14_1 in memory on DESKTOP-VRV0NDO:60638 (size: 50.2 MiB, free: 13.7 GiB)
22/12/16 00:02:01 INFO MemoryStore: Block rdd_14_3 stored as values in memory (estimated size 51.2 MiB, free 13.6 GiB)
22/12/16 00:02:01 INFO BlockManagerInfo: Added rdd_14_3 in memory on DESKTOP-VRV0NDO:60638 (size: 51.2 MiB, free: 13.6 GiB)
22/12/16 00:02:01 INFO MemoryStore: Block rdd_14_8 stored as values in memory (estimated size 52.8 MiB, free 13.6 GiB)
22/12/16 00:02:01 INFO BlockManagerInfo: Added rdd_14_8 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.6 GiB)
22/12/16 00:02:01 INFO MemoryStore: Block rdd_14_7 stored as values in memory (estimated size 52.8 MiB, free 13.5 GiB)
22/12/16 00:02:01 INFO BlockManagerInfo: Added rdd_14_7 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.5 GiB)
22/12/16 00:02:01 INFO Executor: Finished task 0.0 in stage 1.0 (TID 36). 2242 bytes result sent to driver
22/12/16 00:02:02 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 36) in 24227 ms on DESKTOP-VRV0NDO (executor driver) (1/36)
22/12/16 00:02:02 INFO MemoryStore: Block rdd_14_9 stored as values in memory (estimated size 52.8 MiB, free 13.5 GiB)
22/12/16 00:02:02 INFO BlockManagerInfo: Added rdd_14_9 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.5 GiB)
22/12/16 00:02:02 INFO MemoryStore: Block rdd_14_11 stored as values in memory (estimated size 52.8 MiB, free 13.4 GiB)
22/12/16 00:02:02 INFO BlockManagerInfo: Added rdd_14_11 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.4 GiB)
22/12/16 00:02:03 INFO Executor: Finished task 2.0 in stage 1.0 (TID 38). 2242 bytes result sent to driver
22/12/16 00:02:03 INFO TaskSetManager: Finished task 2.0 in stage 1.0 (TID 38) in 25452 ms on DESKTOP-VRV0NDO (executor driver) (2/36)
22/12/16 00:02:03 INFO MemoryStore: Block rdd_14_10 stored as values in memory (estimated size 52.8 MiB, free 13.4 GiB)
22/12/16 00:02:03 INFO BlockManagerInfo: Added rdd_14_10 in memory on DESKTOP-VRV0NDO:60638 (size: 52.8 MiB, free: 13.4 GiB)
22/12/16 00:02:03 INFO Executor: Finished task 5.0 in stage 1.0 (TID 41). 2242 bytes result sent to driver
22/12/16 00:02:03 INFO TaskSetManager: Finished task 5.0 in stage 1.0 (TID 41) in 25521 ms on DESKTOP-VRV0NDO (executor driver) (3/36)
22/12/16 00:02:03 INFO Executor: Finished task 4.0 in stage 1.0 (TID 40). 2199 bytes result sent to driver
22/12/16 00:02:03 INFO TaskSetManager: Finished task 4.0 in stage 1.0 (TID 40) in 26015 ms on DESKTOP-VRV0NDO (executor driver) (4/36)
22/12/16 00:02:03 INFO Executor: Finished task 6.0 in stage 1.0 (TID 42). 2199 bytes result sent to driver

日志大多没啥子用。看Web UI更舒服一点。也就是报错时需要看看Error的Log来定位问题。

结论

通过简单的比对,可以发现:

1,Spark3.3.0中Spark SQL和DataFrame性能已经没有明显差距,甚至SQL写得好时性能还可能超越DataFrame【Spark3.0之前不一定适用】

2,资深SQL Boy写的SQL性能比肤浅的SQL Boy写的SQL性能好,这句废话意在强调平时就需要根据Map和Reduce原理分析SQL该怎么写性能才更好

3,当内存不足时,增加CPU算力并不能显著提升性能,尤其是这类SQL Boy们最喜欢的有Join【或者Group by】的情况,瓶颈是Shuffle,Shuffle的性能瓶颈又是硬盘IO【完全分布式集群可能还存在跨VPC、跨地域、跨机架等情况,性能瓶颈也可能是交换机带宽】

所以,任务跑得慢,单纯优化HQL或者Spark SQL肯定是不够的,该+机器还得+,但是+机器也要先分清楚任务类型【计算密集型、内存密集型】,不能盲目+,否则效果不明显。

不得不说,RSS【Remote Shuffle Service】是个好东西。例如:

Alluxio:https://www.alluxio.com.cn/

案例:https://www.alluxio.com.cn/oppo-use-case-shuttle-and-alluxio/

还有个阿里爸爸最近随着Flink1.16.0一起开源的Celeborn也是个好东西。

Celeborn:http://celeborn.incubator.apache.org/

Celeborn is dedicated to improving the efficiency and elasticity of different map-reduce engines. RSS provides an elastic and high efficient management service for shuffle data.

The current stable version is 0.1.4

转载请注明出处:https://lizhiyong.blog.csdn.net/article/details/128337608

在这里插入图片描述


http://www.ppmy.cn/news/3843.html

相关文章

【前端学习笔记】2. CSS

文章目录1 CSS 应用方式2 选择器3 样式3.1 高度和宽度3.2 块级和行内标签3.3 字体和颜色3.4 文字对齐方式3.5 浮动3.6 内边距3.7 外边距3.8 案例&#xff1a;小米商城4 知识点4.1 hover&#xff08;伪类&#xff09;4.2 after&#xff08;伪类&#xff09;4.3 position4.4 bord…

Ros VsCode C++ 打断点Debug过程实现 | 可能是当前好懂的教程

前言 学了蛮久的Ros&#xff0c;最近第一次有一个项目去复现,通过C实现。实现过程中必然需要Debug一步步的解决问题。然后发现VsCode上Debug Ros还是有点麻烦的&#xff0c;(不同于IDEA非常简明的Debug方式&#xff0c;这里要谴责一下微软&#xff0c;新建项目还要整includepa…

openEuler 倡议建立 eBPF 软件发布标准

eBPF 是一个能够在内核运行沙箱程序的技术&#xff0c;提供了一种在内核事件和用户程序事件发生时安全注入代码的机制&#xff0c;使得非内核开发人员也可以对内核进行控制。随着内核的发展&#xff0c;eBPF 逐步从最初的数据包过滤扩展到了网络、内核、安全、跟踪等&#xff0…

acm是什么?你准备好去打了吗?(未完结)

1.引言2.acm究竟是什么&#xff1f;3.acm的时间安排4.acm该如何准备1.引言 作为一个零基础的小白&#xff0c;acm这条路走的并不顺畅&#xff0c;接触的信息很少&#xff0c;以至于在这条道路上走了不少弯路&#xff0c;浪费了大量的时间&#xff0c;现在也快要退役的阶段&…

【java设计】:全民飞机大战小游戏制作

文章目录 前言 一、全民飞机大战 二、计划安排 三、源码图和类图展示

改进类电磁机制算法(Matlab代码实现)

👨‍🎓个人主页:研学社的博客 💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭:行百里者,半于九十。 📋📋📋本文目录如下:🎁🎁🎁 目录 💥1 概述

第16章 前端登录页面的定义实现

1 Vue与uni-app Uni-app是基于Vue的&#xff0c;但以不完成等同于Vue&#xff0c;Vue的前端实现只能使用浏览器进行渲染显示&#xff0c;而uni-app的前端实现&#xff0c;可以在小程序、App、浏览器都能够进行渲染显示。 Vue与Razor 1、如果没能指定需要前后端分离实现&#x…

【Flask框架】——16 Jinja2模板

文章目录Jinja2模板一、Jinja2模板介绍1.模板传参2.语法二、表达式三、控制语句1.条件判断语句2.for循环语句&#xff1a;四、过滤器1.什么是过滤器2.字符串的过滤器3.数值过滤器4.列表相关过滤器5.字典相关过滤器6.自定义过滤器五、测试器1.Jinja2中内置的测试器2.自定义测试器…