Python调用GPT3.5接口的最新方法

news/2025/1/16 7:47:37/

        GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。

1 openai安装

        Python openai库可直接通过pip install openai安装。如果已经安装openai,但是后续提示找不到ChatCompletion,那么请使用命令“pip install -U openai”来升级openai。

2 api_requestor.py替换

        Python openai安装完成之后,会产生api_requestor.py文件,文件位于python环境库文件目录下“site-packages\openai\api_requestor.py”,如下所示。将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。

Windows:
C:\ProgramData\Anaconda3\Lib\site-packages\openai\api_requestor.py
或
C:\ProgramData\Anaconda3\envs\xxx\lib\site-packages\openai\api_requestor.py
Linux:
/root/miniconda3/lib/pythonxx/site-packages/openaiapi_requestor.py
或
/root/miniconda3/envs/xxx/lib/pythonxx/site-packages/openaiapi_requestor.py
将该文件进行替换,在公众号乐乐感知学堂中回复api35即可获得用来替换的文件。

3 接口调用说明

        接口调用方式不变,与openai自身调用方式一致。输入主要有7个参数。

        (1)model:模型名称,gpt-3.5-turbo或gpt-3.5-turbo-0301

        (2)messages:问题或待补全内容,下面重点介绍。

        (3)temperature:控制结果随机性,0.0表示结果固定,随机性大可以设置为0.9。

        (4)max_tokens:最大返回字数(包括问题和答案),通常汉字占两个token。假设设置成100,如果prompt问题中有40个汉字,那么返回结果中最多包括10个汉字。ChatGPT API允许的最大token数量为4096,即max_tokens最大设置为4096减去问题的token数量。

        (5)top_p:设置为1即可。

        (6)frequency_penalty:设置为0即可。

        (7)presence_penalty:设置为0即可。

        (8)stream:控制连续输出或完整输出。

        需要注意,上述输入参数增加stream,即是否采用控制流的方式输出。

        如果stream取值为False,那么完全返回全部文字结果,可通过response.choices[0].delta['content']进行读取。但是,字数越多,等待返回时间越长,时间可参考控制流读出时的4字/每秒。如果steam取值为True时,那么返回结果是一个Python generator,需要通过迭代获取结果,平均大约每秒钟4个字(33秒134字,39秒157字)。读取程序如下所示.

4 message

        messages字段组成部分包括角色role和content问题两个部分组成,如下所示:

  model="gpt-3.5-turbo",messages=[{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Who won the world series in 2020?"},{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},{"role": "user", "content": "Where was it played?"}]

        在gpt-3.5-turbo模型中,角色role包含system系统、assistant助手和用户user三种类型。System角色相当于告诉ChatGPT具体以何种角色回答问题,需要在content中指明具体的角色和问题内容。而gpt-3.5-turbo-0301主要区别在于更加关注问题内容,而不会特别关注具体的角色部分。gpt-3.5-turbo-0301模型有效期到6月1日,而gpt-3.5-turbo会持续更新。

        assistant助手和用户user则相当于已经指明了角色,content直接写入关注的问题即可。

5 示例程序

          (1)stream = False

import openaidef openai_reply(content, apikey):openai.api_key = apikeyresponse = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301",#gpt-3.5-turbo-0301messages=[{"role": "user", "content": content}],temperature=0.5,max_tokens=1000,top_p=1,frequency_penalty=0,presence_penalty=0,)# print(response)return response.choices[0].message.contentif __name__ == '__main__':content = '你是谁?'ans = openai_reply(content, '你的APIKEY')print(ans)

          (2)stream = True

import time
import openaiopenai.api_key = "你的APIKEY"
response = openai.ChatCompletion.create(model="gpt-3.5-turbo",messages=[{"role": "user", "content": 'how are you'}],temperature=0,max_tokens=1000,stream=True,top_p=1,frequency_penalty=0,presence_penalty=0,user='RdFast智能创作机器人小程序'
)print(response)
print('response["choices"][0]["text"]结果如下所示:')
ans = ''
for r in response:if 'content' in r.choices[0].delta:ans += r.choices[0].delta['content']print(ans)print(ans)

 3 API调用效果


http://www.ppmy.cn/news/35728.html

相关文章

MySQL基础-视图

文章目录MySQL基础-视图一、数据库对象二、视图概念三、视图的使用1、创建视图2、查看视图3、修改视图4、修改/删除视图四、总结MySQL基础-视图 一、数据库对象 对象描述表(TABLE)表是存储数据的逻辑单元,以行和列的形式存在,列就是字段,行…

“转行到测试岗两个月了,特别迷茫,接下来我该干嘛?我能干嘛?”

这段时间看了网上的一些新入行测试岗的朋友留的问题都是关于这个话题的,对此我也给予了一些自己的回答,希望对大家有帮助吧!! 之前在别的工作岗位上工作一年,现在转行到软件测试这个行业已经有两个多月了。 在这个小公…

【leetcode】栈与队列

1. 有效的括号 OJ:有效的括号 给定一个只包括 (,),{,},[,] 的字符串 s ,判断字符串是否有效。 有效字符串需满足: (1)左括号必须用相同类型的右括号闭合。 &…

Xilinx FPGA Multiboot设计与实现(Spartan-6和Kintex-7为例)

文章目录 1. FPGA固件升级方案2. Golden镜像和Multiboot镜像简介3. ISE环境下实现(XC6SLX9)4. Vivado环境下实现(XC7K325T)5. Golden镜像Header分析6. 参考资料7. 示例工程ISE、Vivado、MicroBlaze系列教程 1. FPGA固件升级方案 FPGA的硬件可编程性给设计带来了很高的灵活…

每日学术速递3.29

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.CV 1.CC3D: Layout-Conditioned Generation of Compositional 3D Scenes 标题:CC3D:合成 3D 场景的布局条件生成 作者:Sherwin Bahmani, Jeong Joon …

设计模式-建造者模式

建造者模式是一种创建型设计模式,它允许你创建复杂对象的不同表示,而无需直接与其构造函数参数进行交互。建造者模式将一个复杂对象的构建与其表示分离,使得同样的构建过程可以创建不同的表示。 建造者模式的核心思想是将一个复杂对象的构建…

使用StaMPS_Visualizer

0 前言 StaMPS-Visualizer :由thho开发的用于可视化由StaMPS / MTI处理的DInSAR结果。 github地址:StaMPS-Visualizer 使用StaMPS_Visualizer需要配置好StaMPS,并安装好R和Rstudio Ubuntu中安装StaMPS StaMPS-Visualizer 安装步骤–在linux…

算法:贪婪算法、分而治之

算法:贪婪算法、分而治之 文章目录1.贪婪算法计数硬币实例12.分而治之分割/歇征服/解决合并/合并实例23.动态规划对照实例34.基本概念算法数据定义数据对象内置数据类型派生数据类型基本操作1.贪婪算法 设计算法以实现给定问题的最佳解决方案。在贪婪算法方法中&am…