P问题、NP问题、NPC问题、NP-hard问题详解

news/2024/11/24 4:04:18/

要理解P问题、NP问题、NPC问题、NP-hard问题,需要先弄懂几个概念:

  • 什么是多项式时间?
  • 什么是确定性算法?什么是非确定性算法?
  • 什么是规约/约化?

文章目录

  • 多项式时间(Polynomial time)
  • 确定性算法与非确定性算法
    • 确定性算法:
    • 非确定性算法:
  • 规约/约化
  • P类问题、NP类问题、NPC问题、NP难问题
  • P=NP?
  • Reference:

多项式时间(Polynomial time)

什么是时间复杂度?

时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当程序所处理的问题规模扩大后,程序需要的时间长度对应增长得有多快。也就是说,对于某一个程序,其处理某一个特定数据的效率不能衡量该程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。

不管数据有多大,程序处理所花的时间始终是那么多的,我们就说这个程序很好,具有 O ( 1 ) O(1) O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,比如找n个数中的最大值这个程序的时间复杂度就是 O ( n ) O(n) O(n),为线性级复杂度,而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,时间复杂度是 O ( n 2 ) O(n^2) O(n2),为平方级复杂度。还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是 O ( a n ) O(a^n) O(an)指数级复杂度,甚至 O ( n ! ) O(n!) O(n!)阶乘级复杂度

不会存在 O ( 2 ∗ n 2 ) O(2*n^2) O(2n2) 的复杂度,因为前面的那个"2"是系数,根本不会影响到整个程序的时间增长。同样地, O ( n 3 + n 2 ) O(n^3+n^2) O(n3+n2) 的复杂度也就是 O ( n 3 ) O(n^3) O(n3)的复杂度。因此,我们会说,一个 O ( 0.01 ∗ n 3 ) O(0.01*n^3) O(0.01n3)的程序的效率比 O ( 100 ∗ n 2 ) O(100*n^2) O(100n2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终 O ( n 3 ) O(n^3) O(n3)的复杂度将远远超过 O ( n 2 ) O(n^2) O(n2)。我们也说, O ( n 100 ) O(n^{100}) O(n100)的复杂度小于 O ( 1.0 1 n ) O(1.01^n) O(1.01n)的复杂度。

容易看出,前面的几类复杂度被分为两种级别,其中后者的复杂度无论如何都远远大于前者。像 O ( 1 ) O(1) O(1), O ( ln ⁡ ( n ) ) O(\ln(n)) O(ln(n)), O ( n a ) O(n^a) O(na)等,我们把它叫做多项式级复杂度,因为它的规模n出现在底数的位置;另一种像是 O ( a n ) O(a^n) O(an) O ( n ! ) O(n!) O(n!)等,它是非多项式级的复杂度,其复杂度计算机往往不能承受。当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

确定性算法与非确定性算法

确定性算法:

设A是求解问题B的一个解决算法,在算法的整个执行过程中,每一步都能得到一个确定的解,这样的算法就是确定性算法。

非确定性算法:

设A是求解问题B的一个解决算法,它将问题分解成两部分,分别为猜测阶段和验证阶段,其中

  • 猜测阶段:在这个阶段,对问题的一个特定的输入实例x产生一个任意字符串y,在算法的每一次运行时,y的值可能不同,因此,猜测以一种非确定的形式工作。
  • 验证阶段:在这个阶段,用一个确定性算法(有限时间内)验证。①检查在猜测阶段产生的y是否是合适的形式,如果不是,则算法停下来并得到no;② 如果y是合适的形式,则验证它是否是问题的解,如果是,则算法停下来并得到yes,否则算法停下来并得到no。它是验证所猜测的解的正确性。

规约/约化

问题A可以约化为问题B,称为“问题A可规约为问题B”,可以理解为问题B的解一定就是问题A的解,因此解决A不会难于解决B。由此可知问题B的时间复杂度一定大于等于问题A。

《算法导论》中有一个例子:现在有两个问题:求解一个一元一次方程和求解一个一元二次方程。那么我们说,前者可以规约为后者,意即知道如何解一个一元二次方程那么一定能解出一元一次方程。我们可以写出两个程序分别对应两个问题,那么我们能找到一个“规则”,按照这个规则把解一元一次方程程序的输入数据变一下,用在解一元二次方程的程序上,两个程序总能得到一样的结果。这个规则即是:两个方程的对应项系数不变,一元二次方程的二次项系数为0。

从规约的定义中我们看到,一个问题规约为另一个问题,时间复杂度增加了,问题的应用范围也增大了。通过对某些问题的不断规约,我们能够不断寻找复杂度更高,但应用范围更广的算法来代替复杂度虽然低,但只能用于很小的一类问题的算法。存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。这种问题的存在难以置信,并且更加不可思议的是,这种问题不只一个,它有很多个,它是一类问题。这一类问题就是传说中的NPC问题,也就是NP-完全问题。

P类问题、NP类问题、NPC问题、NP难问题

  1. P类问题:能在多项式时间内可解的问题。

  2. NP类问题:在多项式时间内“可验证”的问题。也就是说,不能判定这个问题到底有没有解,而是猜出一个解来在多项式时间内证明这个解是否正确。即该问题的猜测过程是不确定的,而对其某一个解的验证则能够在多项式时间内完成。P类问题属于NP问题,但NP类问题不一定属于P类问题。

  3. NPC问题:存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:

  • 它是一个NP问题;
  • 所有NP问题都能规约到它。
  1. NP难问题:NP-Hard问题是这样一种问题,它满足NPC问题定义的第二条但不一定要满足第一条(就是说,NP-Hard问题要比 NPC问题的范围广,NP-Hard问题没有限定属于NP),即所有的NP问题都能约化到它,但是他不一定是一个NP问题。NP-Hard问题同样难以找到多项式的算法,但它不列入我们的研究范围,因为它不一定是NP问题。即使NPC问题发现了多项式级的算法,NP-Hard问题有可能仍然无法得到多项式级的算法。事实上,由于NP-Hard放宽了限定条件,它将有可能比所有的NPC问题的时间复杂度更高从而更难以解决。
    以上四个问题之间的关系如下图所示:
    Loading...

P=NP?

  • 此处会再次从不同的角度来讨论P与NP的定义。

“P=NP?” 通常被认为是计算机科学最重要的问题。在很早的时候,就有个数学家毫不客气的指出,P=NP? 是个愚蠢的问题,并且为了嘲笑它,专门在4月1号写了一篇“论文”,称自己证明了 P=NP。

首先,我们要搞清楚什么是“P=NP?” 为此,我们必须先了解一下什么是“算法复杂度”。为此,我们又必须先了解什么是“算法”。我们可以简单的把“算法”想象成一台机器,就跟绞肉机似的。我们给它一些“输入”,它就给我们一些“输出”。比如,绞肉机的输入是肉末,输出是肉渣。牛的输入是草,输出是奶。“加法器”的输入是两个整数,输出是这两个整数的和。“算法理论”所讨论的问题,就是如何设计这些机器,让它们更加有效的工作。就像是说如何培育出优质的奶牛,吃进相同数量的草,更快的产出更多的奶。

世界上的计算问题,都需要“算法”经过一定时间的工作(也叫“计算”),才能得到结果。计算所需要的时间,往往跟“输入”的大小有关系。你的牛吃越是多的草,它就需要越是长时间才能把它们都变成奶。这种草和奶的转换速度,通常被叫做“算法复杂度”。算法复杂度通常被表示为一个函数f(n),其中n是输入的大小。比如,如果我们的算法复杂度为n^2,那么当输入10个东西的时候,它需要100个单元的时间才能完成计算。当输入100 个东西的时候,它需要10000个单元的时间才能完成。当输入1000个数据的时候,它需要1000000个单元的时间。所谓的“P时间”,多项式时间,就是说这个复杂度函数f(n)是一个多项式。
“P=NP?”中的“P”,就是指所有这些复杂度为多项式的算法的“集合”,也就是“所有”的复杂度为多项式的算法。为了简要的描述以下的内容,我定义一些术语:

  • “f(n)时间算法”=“能够在f(n)时间之内,解决某个问题的算法”

当f(n)是个多项式(比如 n 2 n^2 n2)的时候,这就是“多项式时间算法”(P时间算法)。当f(n)是个指数函数(比如 2 n 2^n 2n)的时候,这就是“指数时间算法”(EXPTIME算法)。很多人认为NP问题就是需要指数时间的问题,而NP跟EXPTIME,其实是风马牛不相及的。很显然,P不等于EXPTIME,但是P是否等于NP,却没有一个结论。

现在我来解释一下什么是NP。通常的计算机,都是确定性(deterministic)的。它们在同一个时刻,只有一种行为。如果用程序来表示,那么它们遇到一个条件判断(分支)的时候,只能一次探索其中一条路径。比如:

if (x == 0) {one();
}
else {two();
}

在这里,根据x的值是否为零,one()和two()这两个操作,只有一个会发生。然而,有人幻想出来一种机器,叫做“非确定性计算机”(nondeterministic computer),它可以同时运行这程序的两个分支,one()和two()。这有什么用处呢?它的用处就在于,当你不知道x的大小的时候,根据one()和two()是否“运行成功”,你可以推断出x是否为零。这种方式可以同时探索多种可能性。这不是普通的“并行计算”,因为每当遇到一个分支点,非确定性计算机就会产生新的计算单元,用以同时探索这些路径。这机器就像有“分身术”一样。当这种分支点存在于循环(或者递归)里面的时候,它就会反复的产生新的计算单元,新的计算单元又产生更多的计算单元,就跟细胞分裂一样。一般的计算机都没有 这种“超能力”,它们只有固定数目的计算单元。所以他只能先探索一条路径,失败之后,再回过头来探索另外一条。所以,它们似乎要多花一些时间才能得到结果。到这里,基本的概念都有了定义,于是我们可以圆满的给出P和NP的定义。P和NP是这样两个“问题的集合”:

P = “确定性计算机”能够在“多项式时间”解决的所有问题
NP = “非确定性计算机”能够在“多项式时间”解决的所有问题
(注意它们的区别,仅在于“确定性”或者是“非确定性”。)

“P=NP?”问题的目标,就是想要知道P和NP这两个集合是否相等。为了证明两个集合(A和 B)相等,一般都要证明两个方向:

  1. A 包含 B;
  2. B 包含 A。

上一个标题中我们已经说过NP包含了P。因为任何一个非确定性机器,都能被当成一个确定性的机器来用。你只要不使用它的“超能力”,在每个分支点只探索一条路径就行。所以“P=NP?”问题的关键,就在于P是否也包含了NP。也就是说,如果只使用确定性计算机,能否在多项式时间之内,解决所有非确定性计算机能在多项式时间内解决的问题。

我们来细看一下什么是多项式时间(Polynomial time)。我们都知道, n 2 n^2 n2是多项式, n 1000000 n^{1000000} n1000000 也是多项式。多项式与多项式之间,却有天壤之别。把解决问题所需要的时间,用“多项式”这么笼统的概念来描述,其实是非常不准确的做法。在实际的大规模应用中, n 2 n^2 n2的算法都嫌慢。能找到“多项式时间”的算法,根本不能说明任何问题。对此,理论家们喜欢说,就算再大的多项式(比如 n 1000000 n^{1000000} n1000000),也不能和再小的指数函数(比如 1.000 1 n 1.0001^n 1.0001n)相比。因为总是“存在”一个M,当n>M的时候, 1.000 1 n 1.0001^n 1.0001n会超过 n 1000000 n^{1000000} n1000000。可是问题的关键,却不在于M的“存在”,而在于它的“大小”。如果你的输入必须达到天文数字才能让指数函数超过多项式的话,那么还不如就用指数复杂度的算法。所以,“P=NP?”这问题的错误就在于,它并没有针对我们的实际需要,而是首先假设了我们有“无穷大”的输入,有“无穷多”的时间和耐心,可以让多项式时间的算法“最终”得到优势。


Reference:

[1] 对于“NP难问题”的理解:http://blog.csdn.net/u010021014/article/details/77839858
[2] 谈“P=NP?”:http://yinwang0.lofter.com/post/183ec2_4f6312


http://www.ppmy.cn/news/355621.html

相关文章

机械毕业设计题目推荐,接近10万套,部分目录如下:

小型谷物烘干机设计(cad图纸说明书solidworks三维图)水平螺旋输送机的设计(说明书CAD图纸任务书评阅表鉴定意见外文)汽车连杆夹具毕业设计(论文CAD图纸工艺卡任务书……)发动机连杆加工工艺及夹具设计(论文CAD图纸工序…

前端性能优化之《webpack提升构建速度》

使用CommonsChunkPlugin 多入口情况下,使用CommonsChunkPlugin来提取公共代码 module.exports {plugins: [new CommonsChunkPlugin({name: vender, // 公共代码的chunk命名为 verderfilename: [name].bundle.js // 生成的文件名为 vender.bundle.js})] };使用exter…

速冻水饺一斤大约有多少个

其次,零售商盲目追求利润最大化和轰动效应,打压产品价格,迫使企业采取不正当手段不断降低成本。还有国内多年来对速冻水饺行业不太重视,疏于监管。 劣质水饺 ... 便宜水饺大都在肉上做手脚 1月5日,记者来到抚顺路蔬菜副…

Ф2000干燥机设计 机械搅拌澄清池工艺图 60t转炉一次除尘风机总装配及零部件图 炼钢方坯连铸机地坪与平台工艺平面图 水平刮板输送机设计图 绞肉机设计CAD 手动弯管机全套图纸环形网带输送机/设计

小型水电站发电机安装剖面图Ф2000干燥机设计WY8A.06.01履带式挖掘机液压系统(平台部分)部装图机械搅拌澄清池工艺图60t转炉一次除尘风机总装配及零部件图炼钢方坯连铸机地坪与平台工艺平面图水平刮板输送机设计图洗车机图机构简图XK-450A开炼机设计桌面…

Java面试题入职总线---总目录

👇 👉🚔直接跳到末尾🚔👈 ——>领取专属粉丝福利💖        ☝️ 💋专栏简介:Java攻城狮们的面试福音,全程干货,原价99.9¥,限时49.9&…

凸轮压入裁切机三维图 旋连称重给料机结构图 凸轮装配机三维图 装载机 冷渣机设计 小型电动绞肉机的设计 麦秸打包机 湿喷机 液压抓斗机 45度物料输送机结构图 卷扬机…设计

往复式升降,工件自动夹紧翻转机构三维图全封闭螺杆压缩机的结构图纸洗砂机结构图换热器4套机组全套图纸cj13-10-10-00轨道大车走行机构选刀机械手设计往返滑动的定位机构3D模型半封闭螺杆压缩机结构图纸带式输送机总装图(带底盘)风选机结构图鼓风机房工艺…

2022年流动式起重机司机考试试题及模拟考试

题库来源:安全生产模拟考试一点通公众号小程序 2022年流动式起重机司机考试练习题为流动式起重机司机考试100题考前必练习题目!2022年流动式起重机司机考试试题及模拟考试依据流动式起重机司机新版考试题库。流动式起重机司机全部考试题库随时根据安全生…

面试绞肉机(一)

面试绞肉机——基础知识版 笔试部分(易) 1.在Java中,负责对字节代码解释执行的是(B) A. 应用服务器 B. 虚拟机 C. 垃圾回收器 D. 编译器 2.静态变量通常存储在进程哪个区?(C) A.栈区 B&#xff0e…