如何在灾难救援中,精准定位受困人员的位置?如何在无人机操作中,提高系统精度?如何在人机交互中,更好的实现动作检测和姿势识别?如何在自动驾驶中,做到更精确的自主导航…种种场景中,都离不开MEMS惯性传感器的作用。
MEMS技术拥有非常广阔的市场前景,特别是进入物联网时代,由于应用场景种类繁多,再加上产品生产技术的多样化,为企业带来了巨大的发展机遇。从我国MEMS各产品市场占比来看,MEMS惯性传感器占有超过30%的份额。
惯性传感器是针对物理运动做出反应的器件,如线性位移或角度旋转,并将这种反应转换成电信号,通过电子电路进行放大和处理。其中,加速度计和陀螺仪是最常见的MEMS惯性传感器,加速度计是敏感轴向加速度并转换成可用输出信号的传感器;陀螺仪则是能够测量敏感运动体相对于惯性空间的运动角速度的传感器。此外,MEMS惯性组合测量单元由于可以实现组合导航、减少误差,也广泛应用于需要运动控制的设备上。MEMS惯性传感器在1990年代开始规模应用在汽车工业和国防工业,20世纪初开始应用于手机等消费电子领域,物联网有望引领下一波增长浪潮。
简言之,MEMS惯性传感器的研究成果对于物体的制导、导航,各类型交通工具的自动驾驶以及各种智能穿戴设备的应用具有重要意义。
加速度计是MEMS领域最早开始研究的传感器之一。经过多年的发展,MEMS加速度计的设计和加工技术已经日趋成熟。根据敏感机理不同,MEMS加速度计可以分为压阻式、热流式、谐振式和电容式等。其中,压阻式MEMS加速度计容易受到压阻材料影响,温度效应严重、灵敏度低,横向灵敏度大,精度不高;热流式加速度计由于受传热介质本身的特性限制,器件频率响应慢、线性度差、容易受外界温度影响。因此,这两种加速度计主要用于对精度要求相对较低的民用领域或军事领域中的高g值测量。而谐振式微加速度计理论上可以达到导航级的精度,但目前技术状态还达不到实用化的要求。
此外,电容式硅微加速度计由于精度较高、技术成熟、且环境适应性强,是目前技术最为成熟、应用最为广泛的MEMS加速度计。随着MEMS加工能力提升和ASIC电路检测能力提高,电容式MEMS加速度计的精度也在不断提升。目前,硅微加速度计大部分采用集成化封装,并在此基础上不断朝着高精度、数字化和高可靠性的方向发展。
根据美国Draper实验室对加速度计的预测,微机电MEMS加速度计将取代石英挠性和液浮加速度计;高精度机电加速度计仍保持原有应用领域,部分领域会被微机电MEMS加速度计取代。
自20世纪80年代以来,对角速率敏感的MEMS陀螺仪受到越来越多的关注。根据性能指标,MEMS陀螺仪通常可分为速率级、战术级和惯性级。其中,速率级陀螺仪可用于消费类电子产品、手机、数码相机、游戏机和无线鼠标;战术级陀螺仪适用于工业控制、智能汽车、火车、汽船等领域;惯性级陀螺仪则可用于卫星、航空航天的导航、制导和控制等参数要求严苛的场景。
据美国Draper实验室对2020年陀螺仪的分析和预测,2020年,石英/硅微机电MEMS陀螺将占领中低精度应用领域,即消费级应用。基本功能是测量物体的直线加速度、倾斜角度、转动速度、振动频率和力度等,这些基本的物理信号通过应用程序的开发,可以衍生出各种各样的功能。
这是是基于MEMS技术的新型惯性测量器件,用来测量物体的角速度和加速度信息,是实现微小型无人机、交通工具等导航制导的核心部件。目前,MIMU 正朝着高精度、小体积、集成化、实用化、高可靠的方向发展,在系统中的应用也越来越普遍。特别是在对成本和体积敏感的应用领域,MEMS惯性测量组合单元必将取代体积大、成本高的传统惯性测量单元。
从目前的行业应用来看,消费类市场仍是惯性MEMS器件最大的细分市场,但是价格压力巨大,竞争激烈。随着智能汽车产业的发展,其在汽车领域的应用市场将会逐步打开,并有望超越消费电子行业的需求。根据赛迪智库数据显示,2016-2021年我国MEMS惯性传感器年复合增长率预计为15%,2020年将突破110亿元。
从国内外竞争状况来看,目前国际大厂已经能够实现系统级九轴惯性传感器封装,并且在逐步向“九+”方向演进,如九轴惯性传感器与气体、温湿度传感器集成产品,相比之下,国内产品目前多数仅为六轴产品,且封装尺寸较国际产品还存在不小差距。
近几年来,MEMS惯性传感器发展迅速,精度不断提高。虽然相比光纤陀螺、激光陀螺仍有较大差距,但是其价格低、体积小、重量轻,使得MEMS惯性导航系统在惯性导航系统中发挥了重要作用。未来随着MEMS材料工艺与制造工艺不断发展,MEMS惯性导航系统精度必将不断提高,其成本也将不断降低。
产品技术水平的提高会刺激需求的增长,需求的推动也同样会加速技术的进步。导航、自动驾驶和个人穿戴设备等对惯性传感器的精度需求逐渐提高,精细化测量需求和智能化的发展也对传感器的精度也提出了越来越高的要求。再加上产品装备小体积、低功耗、多功能的需求,未来MEMS传感器将朝着微型化、高集成度的方向发展。并且,随着MEMS惯性传感器的应用范围越来越广泛,工作环境越来越复杂,通过采用新工艺、新机理(如光学陀螺与原子陀螺结合MEMS 工艺制造的MEMS陀螺,以及利用SiC、SiN、聚合物等材料制作的微机械谐振式加速度计等),产品耐高温、耐高压、耐冲击等应对复杂环境的水平也将会越来越高。
道翰天琼认知智能未来机器人接口API简介介绍
- 认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心研究范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心体系。 认知智能四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。
认知智能CI机器人是杭州道翰天琼智能科技有限公司旗下产品。认知智能机器人是依托道翰天琼10年研发的认知智能CI体系为核心而打造的认知智能机器人大脑,是全球第一个认知智能机器人大脑。具有突破性,创新性,领航性。是新一代智能认知智能的最好的产品支撑。 认知智能机器人技术体系更加先进,更加智能,是新一代智能,认知智能领域世界范围内唯一的认知智能机器人。 认知智能机器人是新时代的产物,是新一代智能认知智能的产物。代表了新一代智能认知智能最核心的优势。和人工智能机器人大脑相比,优势非常明显。智能度高,客户粘性大,客户满意度高,易于推广和传播等核心特点。 依托认知智能机器人平台提供的机器人大脑服务,可以赋能各个行业,各个领域的智能设备,各类需要人机互动的领域等。认知智能机器人平台网址:www.weilaitec.com,www.citec.top。欢迎注册使用,走进更智能机器人世界。
认知智能和人工智能的优劣势对比主要可以分为四大方面: 第一:时代发展不同。人工智能是智能时代发展的第二个阶段,认知智能是智能时代发展的第三个阶段。时代发展上决定了认知智能更显具有时代领先性。 第二:基础理论体系不同。人工智能的基础理论体系以数学为基础,以统计概率体系为基础。认知智能基础理论体系以交叉许可理论体系为基础。包含古今中外哲学体系,心理学体系,逻辑学体系,语言学体系,符号学体系,数学体系等学科。其基础理论体系更加具有创新性,突破性和领先性。且交叉学科理论体系的研究也是未来智能发展的大方向。其具体理论体系,还包含三体论(宇宙,信息,大脑三者关系),融智学,和HNC等。 第三:技术体系不同。人工智能的核心技术体系主要是算法,机器学习,深度学习,知识图谱等。其主要功用在感知智能。感知智能其核心主要是在模仿人类的感知能力。认知智能的核心技术体系是以交叉学科理论体系而衍生出来的。具体包含三大核心技术体系,认知维度,类脑模型和万维图谱。认知智能的技术体系核心以类脑的认知体系为基础。以全方位模仿类脑能力为目标。人工智能以感知智能为基础的体系,只能作为认知智能中的类脑模型技术体系中的感知层技术体系。类脑模型大致包含,感知层,记忆层,学习层,理解层,认知层,逻辑层,情感层,沟通层,意识层等9大核心技术层。因此人工智能的核心只是作为认知智能类脑模型中的感知层。因此在技术体系上,人工智能和认知智能基本上没有太多的可比性。 第四:智能度成本等方面的不同:人工智能产品的综合智能程度,普遍在2-3岁左右的智力水平。认知智能产品其智能程度大致在5-8岁左右。认知智能体系构建的机器人更加智能。且更省时间,更省人力和资金。优势非常多。具体请看下列的逐项对比。
道翰天琼CiGril机器人API
道翰天琼CiGril认知智能机器人API用户需要按步骤获取基本信息:
- 在平台注册账号
- 登录平台,进入后台管理页面,创建应用,然后查看应用,查看应用相关信息。
- 在应用信息页面,找到appid,appkey秘钥等信息,然后写接口代码接入机器人应用。
开始接入
请求地址:http://www.weilaitec.com/cigirlrobot.cgr
请求方式:post
请求参数:
参数 | 类型 | 默认值 | 描述 |
userid | String | 无 | 平台注册账号 |
appid | String | 无 | 平台创建的应用id |
key | String | 无 | 平台应用生成的秘钥 |
msg | String | "" | 用户端消息内容 |
ip | String | "" | 客户端ip要求唯一性,无ip等可以用QQ账号,微信账号,手机MAC地址等代替。 |
接口连接示例:http://www.weilaitec.com/cigirlrobot.cgr?key=UTNJK34THXK010T566ZI39VES50BLRBE8R66H5R3FOAO84J3BV&msg=你好&ip=119.25.36.48&userid=jackli&appid=52454214552
注意事项:参数名称都要小写,五个参数不能遗漏,参数名称都要写对,且各个参数的值不能为空字符串。否则无法请求成功。userid,appid,key三个参数要到平台注册登录创建应用之后,然后查看应用详情就可以看到。userid就是平台注册账号。
示例代码JAVA:
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
public class apitest {
/**
* Get请求,获得返回数据
* @param urlStr
* @return
*/
private static String opUrl(String urlStr)
{
URL url = null;
HttpURLConnection conn = null;
InputStream is = null;
ByteArrayOutputStream baos = null;
try
{
url = new URL(urlStr);
conn = (HttpURLConnection) url.openConnection();
conn.setReadTimeout(5 * 10000);
conn.setConnectTimeout(5 * 10000);
conn.setRequestMethod("POST");
if (conn.getResponseCode() == 200)
{
is = conn.getInputStream();
baos = new ByteArrayOutputStream();
int len = -1;
byte[] buf = new byte[128];
while ((len = is.read(buf)) != -1)
{
baos.write(buf, 0, len);
}
baos.flush();
String result = baos.toString();
return result;
} else
{
throw new Exception("服务器连接错误!");
}
} catch (Exception e)
{
e.printStackTrace();
} finally
{
try
{
if (is != null)
is.close();
} catch (IOException e)
{
e.printStackTrace();
}
try
{
if (baos != null)
baos.close();
} catch (IOException e)
{
e.printStackTrace();
}
conn.disconnect();
}
return "";
}
public static void main(String args []){
//msg参数就是传输过去的对话内容。
System.out.println(opUrl("http://www.weilaitec.com/cigirlrobot.cgr?key=UTNJK34THXK010T566ZI39VES50BLRBE8R66H5R3FOAO84J3BV&msg=你好&ip=119.25.36.48&userid=jackli&appid=52454214552"));
}
}