蓝桥杯倒计时 | 倒计时17天

news/2024/11/30 3:51:01/

作者🕵️‍♂️:让机器理解语言か

专栏🎇:蓝桥杯倒计时冲刺

描述🎨:蓝桥杯冲刺阶段,一定要沉住气,一步一个脚印,胜利就在前方!

寄语💓:🐾没有白走的路,每一步都算数!🐾

 题目一:22年省赛A题——小兰做实验 (难度:★★)

小蓝做实验 - 蓝桥云课 (lanqiao.cn)

问题描述

小蓝很喜欢科研, 他最近做了一个实验得到了一批实验数据, 一共是两百 万个正整数。

如果按照预期, 所有的实验数据 x 都应该满足 10^7\leqslant x \leqslant 10^8。但是做实验都会有一些误差, 会导致出现一些预期外的数据, 这种误差数据 y 的 范围是 110^3\leq y\leq10^{12} 。由于小蓝做实验很可靠, 所以他所有的实验数据中 99.99% 以上都是符合预期的。小蓝的所有实验数据都在 primes.txt 中, 现 在他想统计这两百万个正整

数中有多少个是质数, 你能告诉他吗?

答案提交

这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。

【思路】 

三个考点:

  1. 读文件。文件有200万个整数,只能读文件,不能复制到代码中。
  2. 素数判断。判断x是否为素数,可以把它除以[2, sqrt(x)]内的素数,如果能整除就不是素数。
  3. 素数筛,预处理出素数。文件里99.99%的整数都< 10^8,所以只要得到10^4内的素数即可。约1300个素数。其他0.01%的大于10^8的数,数量很少,可以单独判断。

 计算量:1300×200万。
Python代码实际运行时间:约1分钟。

【代码】

注意:在IDLE运行时,代码和文件必须在同一个文件夹内。

from math import *def E_sieve(n):     # 得到10^4以内的素数for i in range (2,int (sqrt (n)+1)):if not vis[i]:for j in range(i*i, n+1,i):vis[j] =1k = 0 for i in range(2,n+1):#存素数if not vis[i]:prime[k] = ik += 1return kdef is_prime(x):  # 判断素数:若n是素数,返回trueif x == 1: return False #1不是素数for i in range(k):if x % prime[i] == 0: return False #不是素数return True     #是素数cnt = 0
N = int(1e4)
prime =[0]*N
vis =[0]*N
n = int(1e4)
k = E_sieve(n-1)
print(k)    #质数个数
with open ('primes.txt','r') as f:    # 读取文件for a in f:b=int(a.rstrip())                 #去掉末尾的\n,转为整数if b<=int(1e8):if is_prime(b)==True:cnt +=1#else:#单独判断大于1e8的数字
print(cnt)

题目二:22年省赛B题——火柴棒数字 (难度:★★★) 

火柴棒数字 - 蓝桥云课 (lanqiao.cn)

问题描述

小蓝最近迷上了用火柴棒拼数字字符, 方法如下图所示:

他只能拼 0 至 9 这十种数字字符, 其中每个数字字符需要的火柴棒的数目 依次是: 6,2,5,5,4,5,6,3,7,6 。他不喜欢重复拼同一个数字字符, 所以对于每个 数字字符他最多拼十个。小蓝会把拼出来的数字字符组合在一起形成一个整数, 例如对于整数 345 , 需要的火柴棒的数目为 5+4+5=14 根。小蓝有 300 根 火柴棒, 他想知道自己能拼出的最大整数是多少? 可以不使用完这 300 根火柴 棒, 可以有多余的火柴棒剩下。

答案提交

这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。

【思路】 

将数字看成价值为1各有10个的物品需要的火柴棒看成重量,这是多重背包问题。因为是填空题,没有用滚动数组优化和二进制优化。

  • 为什么每个数字价值都为1?

答:因为位数越大,这个整数就越大,最大的整数肯定是位数最多的。(例如:9999<10000),每个数字都相当于给你增加了一位数, 所以每个数字价值都为1。

  •  位数相同(价值相同)时,怎么选择?

数字是从小到大装进dp[ ][ ],为了拼出最大的整数,所以输出最大整数时应该按数字i从大到小考虑。当位数相同的时候就选择装了更多数字i的dp,因为装了更多数字i的dp肯定比装了较少的数字i的dp,最后拼出的整数更大。

  • 定义状态dpli][j]:表示把前i个数字装进容量j的背包,能装进背包的最大价值。

【代码】 

N = 300                           # 背包容量
W =[0,6,2,5,5,4,5,6,3,7,6]        # 每种火柴的重量
dp = [[0]*301 for i in range(11)]
for i in range(1,11):             # 遍历所有数字:数字0为1,数字1为2,以此类推。for k in range(0,11):           # 每个数字最多有10个,每个价值为1for j in range(k * W[i],301): # 枚举背包容量dp[i][j] = max(dp[i-1][j], dp[i - 1][j - k * W[i]] + k) # 不装或装第i个数的两种情况取最大值
j=300
for i in range(10,0,-1):    # 遍历所有数字,数字9为10,数字8为9,以此类推k= 0 # 在最大价值下(dp[i][j])最多能装k个数字ifor g in range(0,11):     # 遍历每种数字的数量if j-g*W[i]>=0:         # 背包放得下if (dp[i][j] == dp[i - 1][j - g * W[i]] + g): # 位数(最大价值)相同时,能否装下g个数字ik = g         # 记录最多能装k个j = j - k * W[i]    # 背包剩余容量while k > 0:        # 装了这个数字k个,就输出k个这个数字k -= 1print(i - 1, end='') 
# 答案:9999999999777777777755555555554444444444333333333322222222221111

题目三:22年省赛C题——近似GCD (难度:★★★)

问题描述

小蓝有一个长度为 n 的数组 A=(a1​,a2​,⋯,an​), 数组的子数组被定义为从原数组中选出连续的一个或多个元素组成的数组数组的最大公约数指的是数组中所有元素的最大公约数。如果最多更改数组中的一个元素之后, 数组的最大公约数为 g, 那么称 g 为这个数组的近似 GCD。一个数组的近似 GCD 可能 有多种取值

具体的, 判断 g 是否为一个子数组的近似 GCD 如下:

  1. 如果这个子数组的最大公约数就是 g, 那么说明 g 是其近似 GCD。

  2. 在修改这个子数组中的一个元素之后 (可以改成想要的任何值), 子数组的最大公约数为 g, 那么说明 g 是这个子数组的近似 GCD。

小蓝想知道, 数组 A 有多少个长度大于等于 2 的子数组满足近似 GCD 的 值为 g 

输入格式

输入的第一行包含两个整数 n,g, 用一个空格分隔, 分别表示数组 A 的长 度和 g 的值。

第二行包含 n 个整数 a1​,a2​,⋯,an​, 相邻两个整数之间用一个空格分隔。

输出格式

输出一行包含一个整数表示数组 A 有多少个长度大于等于 2 的子数组的近 似 GCD 的值为 g 。

样例输入

5 3
1 3 6 4 10

样例输出

5

样例说明

满足条件的子数组有 5 个:

[1,3]: 将 1 修改为 3 后, 这个子数组的最大公约数为 3 , 满足条件。

[1,3,6]: 将 1 修改为 3 后, 这个子数组的最大公约数为 3 , 满足条件。

[3,6]:这个子数组的最大公约数就是 3 , 满足条件。

[3,6,4] : 将 4 修改为 3 后, 这个子数组的最大公约数为 3 , 满足条件。

[6,4] : 将 4 修改为 3 后, 这个子数组的最大公约数为 3 , 满足条件。

评测用例规模与约定

对于 20%20% 的评测用例, 2≤n≤10^2 ;

对于 40%40% 的评测用例, 2≤n≤10^3;

对于所有评测用例, 2≤n≤10^51≤g,ai​≤10^9 。

n最大是 10^5,所以最多只能用O(nlogn)的算法。

【思路】 

题解
一个子数组a:

  • 若a中每一项都是g的倍数,只需要将a中某个元素改为g,满足要求。
  • 若a中存在一个不是g的倍数,把它改为g,满足要求。
  • 若a中存在至少2个不是g的倍数,无法满足要求。

问题变成:求原数组有多少个子数组满足这个数组里最多只有一个元素不是g的倍数编码

用双指针遍历原数组                        双指针复杂度:O(n)

【代码】 

        技巧1:用last标记当前的不满足g的倍数的点,下次a[i]再次不满足g的倍数时,j直接跳到last往后一点,确保只有一个不是g的倍数

        技巧2: 每次i移动一步就记录一下双指针的距离(即满足要求的子数组个数),然后将它们累加起来,就是所有满足要求的子数组个数

n,g=map(int,input().split())
a=[0]+list(map(int,input().split()))
ans=0
last=0
j=1
for i in range(1, n+1):    # 前指针往前走if a[i]%g != 0:          # 不满足g的倍数j = last+1             # 后指针往前走last = i               # last标记不满足点,下次a[i]再次不满足g的倍数,j直接跳到last往后一点if i-j+1 >= 2:ans += i-j    # 长度大于2就开始累加
print(ans)


http://www.ppmy.cn/news/34596.html

相关文章

Redis缓存穿透、击穿、雪崩问题及解决方法

系列文章目录 Spring Cache的使用–快速上手篇 分页查询–Java项目实战篇 全局异常处理–Java实战项目篇 完善登录功能–过滤器的使用 上述只是部分文章&#xff0c;对该系列文章感兴趣的可以查看我的主页哦 文章目录系列文章目录前言一、缓存穿透1.1 问题引入1.2 解决方法1.…

黑马程序员 Redis 踩坑及解决

文章目录实战篇p30 短信登录-隐藏用户敏感信息p50 优惠券秒杀-添加优惠券p69 秒杀优化-异步秒杀思路p81 达人探店-点赞排行榜p87 好友关注-实现滚动分页查询问题 1问题 2p90 附近商铺-实现附近商户功能实战篇 p30 短信登录-隐藏用户敏感信息 问题描述&#xff1a;登录后会跳转…

go语言gin框架学习

让框架去做http解包封包等&#xff0c;让我们的精力用在应用层开发 MVC模式 M: model&#xff0c;操作数据库gorm view 视图 处理模板页面 contoller 控制器 路由 逻辑函数 解决gin相关代码飘红的问题 记得启用gomodule go env -w GO111MODULEon然后到相应目录下执行 go mod i…

【Java】弄清方法重写,看这一篇就够了|由浅入深,保姆级讲解

作者&#xff1a;努力学习的大一在校计算机专业学生&#xff0c;热爱学习和创作。目前在学习和分享&#xff1a;算法、数据结构、Java等相关知识。博主主页&#xff1a; 是瑶瑶子啦所属专栏: Java岛冒险记【从小白到大佬之路】&#xff1b;该专栏专注于Java相关知识&#xff0c…

在 AI 上训练 AI:ChatGPT 上训练另一种机器学习模型

ChatGPT 可以像 Linux 终端一样运行&#xff0c;并在给出以下提示时返回执行结果。下面我来带大家操作起来。 文章目录终端操作训练机器学习模型镜像演示终端操作 输入&#xff1a;I want you to act as a Linux terminal. I will type commands and you will reply with what…

课设-机器学习课设-实现新闻分类

✅作者简介&#xff1a;CSDN内容合伙人、信息安全专业在校大学生&#x1f3c6; &#x1f525;系列专栏 &#xff1a;课设-机器学习 &#x1f4c3;新人博主 &#xff1a;欢迎点赞收藏关注&#xff0c;会回访&#xff01; &#x1f4ac;舞台再大&#xff0c;你不上台&#xff0c;…

基于OpenCV的人脸识别

目录 &#x1f969; 前言 &#x1f356; 环境使用 &#x1f356; 模块使用 &#x1f356; 模块介绍 &#x1f356; 模块安装问题: &#x1f969; OpenCV 简介 &#x1f356; 安装 OpenCV 模块 &#x1f969; OpenCV 基本使用 &#x1f356; 读取图片 &#x1f357; 【…

MHA实现mysql数据库高可用

目录 MHA原理 MHA工具包 MHA实现mysql高可用实战 MHA原理 ①MHA利用 SELECT 1 As Value 指令判断master服务器的健康性,一旦master 宕机,MHA 从宕机崩溃的master保存二进制日志事件&#xff08;binlog events&#xff09; ②识别含有最新更新的slave ③应用差异的中继日志&…