I.MX6ULL_Linux_驱动篇(29) GPIO驱动

news/2024/12/28 15:47:19/

Linux 下的任何外设驱动,最终都是要配置相应的硬件寄存器。所以本篇的 LED 灯驱动最终也是对 I.MX6ULL 的 IO 口进行配置,与裸机实验不同的是,在 Linux 下编写驱动要符合 Linux
的驱动框架。I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 GPIO1_IO03 这个引脚上,因此本章实验的重点就是编写 Linux 下 I.MX6UL 引脚控制驱动。

内存映射

Linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后CPU访问的都是虚拟地址。 比如I.MX6ULL的GPIO1_IO03引脚的复用寄存器IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 的地址为 0X020E0068。如果没有开启 MMU 的话直接向 0X020E0068 这个寄存器地址写入数据就可以配置 GPIO1_IO03 的复用功能。现在开启了 MMU,并且设置了内存映射,因此就不能直接向 0X020E0068 这个地址写入数据了。我们必须得到 0X020E0068 这个物理地址在 Linux 系统里面对应的虚拟地址,这里就涉及到了物理内存和虚拟内存之间的转换,需要用到两个函数: ioremap 和 iounmap。

ioremap 函数

ioremap函数用于获取指定物理地址空间对应的虚拟地址空间, 定义在arch/arm/include/asm/io.h 文件中,定义如下:

1 #define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE)
2 
3 void __iomem * __arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
4 {
5     return arch_ioremap_caller(phys_addr, size, mtype, __builtin_return_address(0));
6 }

ioremap 是个宏,有两个参数: cookie 和 size,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,这些参数和返回值的含义如下:
phys_addr:要映射给的物理起始地址。
size:要映射的内存空间大小。
mtype: ioremap 的类型,可以选择 MT_DEVICE、 MT_DEVICE_NONSHARED、
MT_DEVICE_CACHED 和 MT_DEVICE_WC, ioremap 函数选择 MT_DEVICE。
返回值: __iomem 类型的指针,指向映射后的虚拟空间首地址。
假如我们要获取 I.MX6ULL 的 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器对应的虚拟地址,使用如下代码即可:

#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
static void __iomem* SW_MUX_GPIO1_IO03;
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);

宏 SW_MUX_GPIO1_IO03_BASE 是寄存器物理地址, SW_MUX_GPIO1_IO03 是映射后的虚拟地址。对于 I.MX6ULL 来说一个寄存器是 4 字节(32 位)的,因此映射的内存长度为 4。映射完成以后直接对 SW_MUX_GPIO1_IO03 进行读写操作即可。

iounmap 函数

卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射, iounmap 函数原型如下:

void iounmap (volatile void __iomem *addr)

iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。假如我们现在要取消掉 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器的地址映射,使用如下代码即可:

iounmap(SW_MUX_GPIO1_IO03);

I/O 内存访问函数

这里说的 I/O 是输入/输出的意思,并不是我们学习单片机的时候讲的 GPIO 引脚。这里涉及到两个概念: I/O 端口和 I/O 内存。当外部寄存器或内存映射到 IO 空间时,称为 I/O 端口。当外部寄存器或内存映射到内存空间时,称为 I/O 内存。但是对于 ARM 来说没有 I/O 空间这个概念,因此 ARM 体系下只有 I/O 内存(可以直接理解为内存)。使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。

读操作函数:

u8 readb(const volatile void __iomem *addr)
u16 readw(const volatile void __iomem *addr)
u32 readl(const volatile void __iomem *addr)

readb、 readw 和 readl 这三个函数分别对应 8bit、 16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。

写操作函数:

void writeb(u8 value, volatile void __iomem *addr)
void writew(u16 value, volatile void __iomem *addr)
void writel(u32 value, volatile void __iomem *addr)

writeb、 writew 和 writel 这三个函数分别对应 8bit、 16bit 和 32bit 写操作,参数 value 是要写入的数值, addr 是要写入的地址。

GPIO驱动程序编写

新建工程文件夹,然后创建 VSCode 或SourceInsight工程。新建 gpio.c 文件,此文件就是 led 的驱动文件,在文件里面输入如下内容:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>#define LED_MAJOR		200		/* 主设备号 */
#define LED_NAME		"led" 	/* 设备名字 */#define LEDOFF 	0				/* 关灯 */
#define LEDON 	1				/* 开灯 *//* 寄存器物理地址 */
#define CCM_CCGR1_BASE				(0X020C406C)	
#define SW_MUX_GPIO1_IO03_BASE		(0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE		(0X020E02F4)
#define GPIO1_DR_BASE				(0X0209C000)
#define GPIO1_GDIR_BASE				(0X0209C004)/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;/** @description		: LED打开/关闭* @param - sta 	: LEDON(0) 打开LED,LEDOFF(1) 关闭LED* @return 			: 无*/
void led_switch(u8 sta)
{u32 val = 0;if(sta == LEDON) {val = readl(GPIO1_DR);val &= ~(1 << 3);	writel(val, GPIO1_DR);}else if(sta == LEDOFF) {val = readl(GPIO1_DR);val|= (1 << 3);	writel(val, GPIO1_DR);}	
}/** @description		: 打开设备* @param - inode 	: 传递给驱动的inode* @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量* 					  一般在open的时候将private_data指向设备结构体。* @return 			: 0 成功;其他 失败*/
static int led_open(struct inode *inode, struct file *filp)
{return 0;
}/** @description		: 从设备读取数据 * @param - filp 	: 要打开的设备文件(文件描述符)* @param - buf 	: 返回给用户空间的数据缓冲区* @param - cnt 	: 要读取的数据长度* @param - offt 	: 相对于文件首地址的偏移* @return 			: 读取的字节数,如果为负值,表示读取失败*/
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{return 0;
}/** @description		: 向设备写数据 * @param - filp 	: 设备文件,表示打开的文件描述符* @param - buf 	: 要写给设备写入的数据* @param - cnt 	: 要写入的数据长度* @param - offt 	: 相对于文件首地址的偏移* @return 			: 写入的字节数,如果为负值,表示写入失败*/
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{int retvalue;unsigned char databuf[1];unsigned char ledstat;retvalue = copy_from_user(databuf, buf, cnt);if(retvalue < 0) {printk("kernel write failed!\r\n");return -EFAULT;}ledstat = databuf[0];		/* 获取状态值 */if(ledstat == LEDON) {	led_switch(LEDON);		/* 打开LED灯 */} else if(ledstat == LEDOFF) {led_switch(LEDOFF);	/* 关闭LED灯 */}return 0;
}/** @description		: 关闭/释放设备* @param - filp 	: 要关闭的设备文件(文件描述符)* @return 			: 0 成功;其他 失败*/
static int led_release(struct inode *inode, struct file *filp)
{return 0;
}/* 设备操作函数 */
static struct file_operations led_fops = {.owner = THIS_MODULE,.open = led_open,.read = led_read,.write = led_write,.release = 	led_release,
};/** @description	: 驱动出口函数* @param 		: 无* @return 		: 无*/
static int __init led_init(void)
{int retvalue = 0;u32 val = 0;/* 初始化LED *//* 1、寄存器地址映射 */IMX6U_CCM_CCGR1 = ioremap(CCM_CCGR1_BASE, 4);SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);GPIO1_DR = ioremap(GPIO1_DR_BASE, 4);GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);/* 2、使能GPIO1时钟 */val = readl(IMX6U_CCM_CCGR1);val &= ~(3 << 26);	/* 清楚以前的设置 */val |= (3 << 26);	/* 设置新值 */writel(val, IMX6U_CCM_CCGR1);/* 3、设置GPIO1_IO03的复用功能,将其复用为*    GPIO1_IO03,最后设置IO属性。*/writel(5, SW_MUX_GPIO1_IO03);/*寄存器SW_PAD_GPIO1_IO03设置IO属性*bit 16:0 HYS关闭*bit [15:14]: 00 默认下拉*bit [13]: 0 kepper功能*bit [12]: 1 pull/keeper使能*bit [11]: 0 关闭开路输出*bit [7:6]: 10 速度100Mhz*bit [5:3]: 110 R0/6驱动能力*bit [0]: 0 低转换率*/writel(0x10B0, SW_PAD_GPIO1_IO03);/* 4、设置GPIO1_IO03为输出功能 */val = readl(GPIO1_GDIR);val &= ~(1 << 3);	/* 清除以前的设置 */val |= (1 << 3);	/* 设置为输出 */writel(val, GPIO1_GDIR);/* 5、默认关闭LED */val = readl(GPIO1_DR);val |= (1 << 3);	writel(val, GPIO1_DR);/* 6、注册字符设备驱动 */retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);if(retvalue < 0){printk("register chrdev failed!\r\n");return -EIO;}return 0;
}/** @description	: 驱动出口函数* @param 		: 无* @return 		: 无*/
static void __exit led_exit(void)
{/* 取消映射 */iounmap(IMX6U_CCM_CCGR1);iounmap(SW_MUX_GPIO1_IO03);iounmap(SW_PAD_GPIO1_IO03);iounmap(GPIO1_DR);iounmap(GPIO1_GDIR);/* 注销字符设备驱动 */unregister_chrdev(LED_MAJOR, LED_NAME);
}module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("xxx");

编写测试 APP

编写测试 APP, led 驱动加载成功以后手动创建/dev/led 节点,应用 APP 通过操作/dev/led文件来完成对 LED 设备的控制。向/dev/led 文件写 0 表示关闭 LED 灯,写 1 表示打开 LED 灯。
新建 ledApp.c 文件,在里面输入如下内容:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"#define LEDOFF 	0
#define LEDON 	1/** @description		: main主程序* @param - argc 	: argv数组元素个数* @param - argv 	: 具体参数* @return 			: 0 成功;其他 失败*/
int main(int argc, char *argv[])
{int fd, retvalue;char *filename;unsigned char databuf[1];if(argc != 3){printf("Error Usage!\r\n");return -1;}filename = argv[1];/* 打开led驱动 */fd = open(filename, O_RDWR);if(fd < 0){printf("file %s open failed!\r\n", argv[1]);return -1;}databuf[0] = atoi(argv[2]);	/* 要执行的操作:打开或关闭 *//* 向/dev/led文件写入数据 */retvalue = write(fd, databuf, sizeof(databuf));if(retvalue < 0){printf("LED Control Failed!\r\n");close(fd);return -1;}retvalue = close(fd); /* 关闭文件 */if(retvalue < 0){printf("file %s close failed!\r\n", argv[1]);return -1;}return 0;
}

运行测试

将编译出来的 led.ko和 ledApp这两个文件拷贝到 rootfs/lib/modules/4.1.15 目录中,重启开发板,进入到目录 lib/modules/4.1.15 中,输入如下命令加载 led.ko 驱动模块:

depmod //第一次加载驱动的时候需要运行此命令
modprobe led.ko //加载驱动

驱动加载成功以后创建“/dev/led”设备节点,命令如下:

mknod /dev/led c 200 0

驱动节点创建成功以后就可以使用 ledApp 软件来测试驱动是否工作正常,输入如下命令打开 LED 灯:

./ledApp /dev/led 1 //打开 LED 灯

输入上述命令以后观察 I.MX6U-ALPHA 开发板上的红色 LED 灯是否点亮,如果点亮的话 说明驱动工作正常。在输入如下命令关闭 LED 灯:

./ledApp /dev/led 0 //关闭 LED 灯

输入上述命令以后观察 I.MX6U-ALPHA 开发板上的红色 LED 灯是否熄灭,如果熄灭的话说明我们编写的 LED 驱动工作完全正常!至此,我们成功编写了第一个真正的 Linux 驱动设备程序。如果要卸载驱动的话输入如下命令即可:

rmmod led.ko

http://www.ppmy.cn/news/32938.html

相关文章

公司测试员用例写得乱七八糟,测试总监制定了这份《测试用例编写规范》

统一测试用例编写的规范&#xff0c;为测试设计人员提供测试用例编写的指导&#xff0c;提高编写的测试用例的可读性&#xff0c;可执行性、合理性。为测试执行人员更好执行测试&#xff0c;提高测试效率&#xff0c;最终提高公司整个产品的质量。 一、范围 适用于集成测试用…

Anaconda的简单使用(基本命令+jupyter内核切换)

一、Anaconda安装图1 Anaconda官网Anaconda官网&#xff0c;下载所对应的版本。这里2021年之后的版本(大概)需要有python3.9环境。按照安装教程一步步地走下去即可。Anaconda简介在开始菜单栏中可以看到Anaconda一系列的工具&#xff0c;常用的是Anaconda终端、Jupyter Noteboo…

Shell自动化管理 for ORACLE DBA

1.自动收集每天早上9点到晚上8点之间的AWR报告。 auto_awr.sh #!/bin/bash# Set variables ORACLE_HOME/u01/app/oracle/product/12.1.0/dbhome_1 ORACLE_SIDorcl AWR_DIR/home/oracle/AWR# Set date format for file naming DATE$(date %Y%m%d%H%M%S)# Check current time - …

【AI 工具】文心一言内测记录

文章目录一、申请内测二、收到内测邀请三、激活内测四、开始使用1、普通对话2、生成图片3、生成代码4、写剧本5、生成小说五、问题反馈一、申请内测 到 https://yiyan.baidu.com/welcome 页面 , 点击 " 开始体验 " 按钮 , 申请试用 ; 申请时 , 需要填写相关信息 ; 主…

【C语言进阶:刨根究底字符串函数】 strcmp 函数

本节重点内容&#xff1a; 深入理解strcmp函数的使用学会strcmp函数的模拟实现下面演示一种错误的比较方式&#xff1a; if ("abcdef" "bcdefg") //这里比较的是两个字符串首字符的地址&#xff0c;而不是字符串的内容 这种比法语法上是没有任何问题的…

基于springboot+vue的“智慧食堂”程序设计实现【毕业论文,源码】

系统登录界面系统架构开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7数据库工具&#xff1a;Navicat开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;Maven浏览器&#xf…

IDEA好用插件:MybatisX快速生成接口实体类mapper.xml映射文件

目录 1、在Idea中找到下载插件&#xff0c;Install&#xff0c;重启Idea 2、一个测试java文件&#xff0c;里面有com包 3、在Idea中添加数据库 --------以Oracle数据库为例 4、快速生成entity-service-mapper方法 5、查看生成的代码 6、自动生成&#xff08;增删查改&#xff0…

求最大公约数和最小公倍数---辗转相除法(欧几里得算法)

目录 一.GCD和LCM 1.最大公约数 2.最小公倍数 二.暴力求解 1.最大公约数 2.最小公倍数 三.辗转相除法 1.最大公约数 2.最小公倍数 一.GCD和LCM 1.最大公约数 最大公约数&#xff08;Greatest Common Divisor&#xff0c;简称GCD&#xff09;指的是两个或多个整数共有…