30那个地方改仿真的时长,默认是10us(但实际上好像是1us) 这里改成30us
//加载被乘数,运算时每次左移一位 (这里把被乘数位拓展了)
reg [63:0] multiplicand
//加载乘数,运算时每次右移一位,相当于y
reg [31:0] multiplier;
// 部分积:乘数末位为1,由被乘数左移得到;乘数末位为0,部分积为0
wire [63:0] partial_product;
//累加器
reg [63:0] product_temp; //临时结果 product_temp <= product_temp + partial_product;
这个部分积直接由被乘数得到,然后每一个时钟上跳沿直接加到temp上。
代码中always是并行的。这是理解乘法器的关键!然后每个always里仅对一个信号赋值!
mult_end 为1的时候 表示乘法运算结束 (故看仿真结果的时候得看end为1时候对应的结果)
mult_valid 为1 表示进行有效的运算
代码见Verilog编程之乘法器的实现_王森ouc的博客-CSDN博客_verilog乘法
人家总结:reg型变量必须通过过程赋值语句赋值!
不能通过assign语句赋值!
而wire型数据不能放在过程块内赋值。
multiply.v 与 testbench.v分别如下
`timescale 1ns / 1ps
module multiply( // 乘法器input clk, // 时钟input mult_begin, // 乘法开始信号input [31:0] mult_op1, // 乘法源操作数1input [31:0] mult_op2, // 乘法源操作数2output [63:0] product, // 乘积output mult_end // 乘法结束信号
);//乘法正在运算信号和结束信号reg mult_valid;assign mult_end = mult_valid & ~(|multiplier); //乘法结束信号:乘数全0always @(posedge clk) //①beginif (!mult_begin || mult_end) //如果没有开始或者已经结束了beginmult_valid <= 1'b0; //mult_valid 赋值成0,说明现在没有进行有效的乘法运算endelsebeginmult_valid <= 1'b1;endend//两个源操作取绝对值,正数的绝对值为其本身,负数的绝对值为取反加1wire op1_sign; //操作数1的符号位wire op2_sign; //操作数2的符号位wire [31:0] op1_absolute; //操作数1的绝对值wire [31:0] op2_absolute; //操作数2的绝对值assign op1_sign = mult_op1[31];assign op2_sign = mult_op2[31];assign op1_absolute = op1_sign ? (~mult_op1+1) : mult_op1;assign op2_absolute = op2_sign ? (~mult_op2+1) : mult_op2;//加载被乘数,运算时每次左移一位reg [63:0] multiplicand;always @ (posedge clk) //②beginif (mult_valid)begin // 如果正在进行乘法,则被乘数每时钟左移一位multiplicand <= {multiplicand[62:0],1'b0}; //被乘数x每次左移一位。endelse if (mult_begin) begin // 乘法开始,加载被乘数,为乘数1的绝对值multiplicand <= {32'd0,op1_absolute};endend//加载乘数,运算时每次右移一位,相当于yreg [31:0] multiplier;always @ (posedge clk) //③beginif(mult_valid)begin //如果正在进行乘法,则乘数每时钟右移一位multiplier <= {1'b0,multiplier[31:1]}; //相当于乘数y右移一位endelse if(mult_begin)begin //乘法开始,加载乘数,为乘数2的绝对值multiplier <= op2_absolute;endend// 部分积:乘数末位为1,由被乘数左移得到;乘数末位为0,部分积为0wire [63:0] partial_product;assign partial_product = multiplier[0] ? multiplicand:64'd0; //若此时y的最低位为1,则把x赋值给部分积partial_product,否则把0赋值给partial_product//累加器reg [63:0] product_temp; //临时结果always @ (posedge clk) //④//clk信号从0变为1时,激发此段语句的执行,但语句的执行需要时间beginif (mult_valid)beginproduct_temp <= product_temp + partial_product;end else if (mult_begin)beginproduct_temp <= 64'd0;endend//乘法结果的符号位和乘法结果reg product_sign; //乘积结果的符号always @ (posedge clk) // 乘积⑤beginif (mult_valid)beginproduct_sign <= op1_sign ^ op2_sign;endend //若乘法结果为负数,则需要对结果取反+1assign product = product_sign ? (~product_temp+1) : product_temp;
endmodule
`timescale 1ns / 1psmodule tb;// Inputsreg clk;reg mult_begin;reg [31:0] mult_op1;reg [31:0] mult_op2;// Outputswire [63:0] product;wire mult_end;// Instantiate the Unit Under Test (UUT)multiply uut (.clk(clk), .mult_begin(mult_begin), .mult_op1(mult_op1), .mult_op2(mult_op2), .product(product), .mult_end(mult_end));initial begin// Initialize Inputsclk = 0;mult_begin = 0;mult_op1 = 0;mult_op2 = 0;// Wait 100 ns for global reset to finish#100;mult_begin = 1;mult_op1 = 32'H00001111;mult_op2 = 32'H00001111;#400;mult_begin = 0;#500;mult_begin = 1;mult_op1 = 32'H00001111;mult_op2 = 32'H00002222;#400;mult_begin = 0;#500;mult_begin = 1;mult_op1 = 32'H00000002;mult_op2 = 32'HFFFFFFFF;#400;mult_begin = 0;#500;mult_begin = 1;mult_op1 = 32'H00000002;mult_op2 = 32'H80000000;#400;mult_begin = 0;// Add stimulus hereendalways #5 clk = ~clk;
endmodule
尽量不要在一个always块里对多个信号赋值,不然可能造成多驱动的问题(在不同的always里若有对相同的赋值,那出大问题(听谁的呢))
wire只是一个线路,并不能把数存住,存住得放到寄存器里(reg)
multiplier multiplicand 为内部信号 可从仿真的左侧栏里Scope-uut模块里-objects-右键某个信号就可以加进去(新加进去的是空的,得刷新下Relaunch)
仿真技巧: shift +滚轮 在变量可以新建文件夹:把要看的变量扔进去
赋初值的时候,常用非阻塞赋值。阻塞赋值即串行,非阻塞是执行完了一起赋值。(p58)
`timescale 1ns/1ns
写在所有仿真文件(.v)的代码首行,时间尺度、精度单位定义,时间尺度预编译指令,用来定义模块仿真时的时间单位和时间精度,不可被综合,但在可综合代码中也可以写,只是会在仿真时表达效果,而综合时会自动被综合器优化掉。格式如下:
`timescale 时间尺度/时间精度 或 `timescale timeunit / timeprecision
注意:仿真时间单位和时间精度的数字只能是1、10、100,不能为其它的数字。而且,时间精度不能比时间单位还要大。最多两者一样大。比如:下面定义都是对的:
`timescale 1ns/1ns
`timescale 100ns/100ns
下面的定义是错的
`timescale 1ps/1ns
时间的进位关系如下: s ms us ns ps 毫秒 微秒 纳秒 皮秒 10的三次方
时间精度就是模块仿真时间和延时的精确程序,比如:定义时间精度为10ns,那么时序中所有的延时至多能精确到10ns,而8ns或者18ns是不可能做到的。
上板验证:
约束文件 与 display文件 变量名字对应上哦,可根据之前加法器的display和约束文件对着看。
set_property PACKAGE_PIN AC19 [get_ports clk]
set_property PACKAGE_PIN U26 [get_ports led_end]
set_property PACKAGE_PIN AB21 [get_ports resetn]
set_property PACKAGE_PIN AE17 [get_ports input_sel]
set_property PACKAGE_PIN AF17 [get_ports sw_begin]set_property IOSTANDARD LVCMOS33 [get_ports clk]
set_property IOSTANDARD LVCMOS33 [get_ports led_end]
set_property IOSTANDARD LVCMOS33 [get_ports resetn]
set_property IOSTANDARD LVCMOS33 [get_ports input_sel]
set_property IOSTANDARD LVCMOS33 [get_ports sw_begin]#lcd
set_property PACKAGE_PIN E5 [get_ports lcd_rst]
set_property PACKAGE_PIN G7 [get_ports lcd_cs]
set_property PACKAGE_PIN H7 [get_ports lcd_rs]
set_property PACKAGE_PIN E6 [get_ports lcd_wr]
set_property PACKAGE_PIN D5 [get_ports lcd_rd]
set_property PACKAGE_PIN J5 [get_ports lcd_bl_ctr]
set_property PACKAGE_PIN C4 [get_ports {lcd_data_io[0]}]
set_property PACKAGE_PIN C3 [get_ports {lcd_data_io[1]}]
set_property PACKAGE_PIN D4 [get_ports {lcd_data_io[2]}]
set_property PACKAGE_PIN D3 [get_ports {lcd_data_io[3]}]
set_property PACKAGE_PIN F5 [get_ports {lcd_data_io[4]}]
set_property PACKAGE_PIN G6 [get_ports {lcd_data_io[5]}]
set_property PACKAGE_PIN F4 [get_ports {lcd_data_io[6]}]
set_property PACKAGE_PIN E3 [get_ports {lcd_data_io[7]}]
set_property PACKAGE_PIN G5 [get_ports {lcd_data_io[8]}]
set_property PACKAGE_PIN H6 [get_ports {lcd_data_io[9]}]
set_property PACKAGE_PIN F2 [get_ports {lcd_data_io[10]}]
set_property PACKAGE_PIN F3 [get_ports {lcd_data_io[11]}]
set_property PACKAGE_PIN G4 [get_ports {lcd_data_io[12]}]
set_property PACKAGE_PIN G2 [get_ports {lcd_data_io[13]}]
set_property PACKAGE_PIN H4 [get_ports {lcd_data_io[14]}]
set_property PACKAGE_PIN H3 [get_ports {lcd_data_io[15]}]
set_property PACKAGE_PIN K6 [get_ports ct_int]
set_property PACKAGE_PIN J6 [get_ports ct_sda]
set_property PACKAGE_PIN L8 [get_ports ct_scl]
set_property PACKAGE_PIN K7 [get_ports ct_rstn]set_property IOSTANDARD LVCMOS33 [get_ports lcd_rst]
set_property IOSTANDARD LVCMOS33 [get_ports lcd_cs]
set_property IOSTANDARD LVCMOS33 [get_ports lcd_rs]
set_property IOSTANDARD LVCMOS33 [get_ports lcd_wr]
set_property IOSTANDARD LVCMOS33 [get_ports lcd_rd]
set_property IOSTANDARD LVCMOS33 [get_ports lcd_bl_ctr]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[8]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[9]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[10]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[11]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[12]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[13]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[14]}]
set_property IOSTANDARD LVCMOS33 [get_ports {lcd_data_io[15]}]
set_property IOSTANDARD LVCMOS33 [get_ports ct_int]
set_property IOSTANDARD LVCMOS33 [get_ports ct_sda]
set_property IOSTANDARD LVCMOS33 [get_ports ct_scl]
set_property IOSTANDARD LVCMOS33 [get_ports ct_rstn]
module multiply_display(//时钟与复位信号input clk,input resetn, //后缀"n"代表低电平有效//拨码开关,用于选择输入数input input_sel, //0:输入为乘数1;1:输入为乘数2input sw_begin,//乘法结束信号output led_end,//触摸屏相关接口,不需要更改output lcd_rst,output lcd_cs,output lcd_rs,output lcd_wr,output lcd_rd,inout[15:0] lcd_data_io,output lcd_bl_ctr,inout ct_int,inout ct_sda,output ct_scl,output ct_rstn
);
//-----{调用乘法器模块}beginwire mult_begin;reg [31:0] mult_op1; reg [31:0] mult_op2; wire [63:0] product; wire mult_end; assign mult_begin = sw_begin;assign led_end = mult_end;multiply multiply_module (.clk (clk ),.mult_begin(mult_begin),.mult_op1 (mult_op1 ), .mult_op2 (mult_op2 ),.product (product ),.mult_end (mult_end ));reg [63:0] product_r;always @(posedge clk)beginif (!resetn)beginproduct_r <= 64'd0;endelse if (mult_end)beginproduct_r <= product;endend
//-----{调用乘法器模块}end//---------------------{调用触摸屏模块}begin--------------------//
//-----{实例化触摸屏}begin
//此小节不需要更改reg display_valid;reg [39:0] display_name;reg [31:0] display_value;wire [5 :0] display_number;wire input_valid;wire [31:0] input_value;lcd_module lcd_module(.clk (clk ), //10Mhz.resetn (resetn ),//调用触摸屏的接口.display_valid (display_valid ),.display_name (display_name ),.display_value (display_value ),.display_number (display_number),.input_valid (input_valid ),.input_value (input_value ),//lcd触摸屏相关接口,不需要更改.lcd_rst (lcd_rst ),.lcd_cs (lcd_cs ),.lcd_rs (lcd_rs ),.lcd_wr (lcd_wr ),.lcd_rd (lcd_rd ),.lcd_data_io (lcd_data_io ),.lcd_bl_ctr (lcd_bl_ctr ),.ct_int (ct_int ),.ct_sda (ct_sda ),.ct_scl (ct_scl ),.ct_rstn (ct_rstn ));
//-----{实例化触摸屏}end//-----{从触摸屏获取输入}begin
//根据实际需要输入的数修改此小节,
//建议对每一个数的输入,编写单独一个always块//当input_sel为0时,表示输入数为乘数1always @(posedge clk)beginif (!resetn)beginmult_op1 <= 32'd0;endelse if (input_valid && !input_sel)beginmult_op1 <= input_value;endend//当input_sel为1时,表示输入数为乘数2always @(posedge clk)beginif (!resetn)beginmult_op2 <= 32'd0;endelse if (input_valid && input_sel)beginmult_op2 <= input_value;endend
//-----{从触摸屏获取输入}end//-----{输出到触摸屏显示}begin
//根据需要显示的数修改此小节,
//触摸屏上共有44块显示区域,可显示44组32位数据
//44块显示区域从1开始编号,编号为1~44,always @(posedge clk)begincase(display_number)6'd1 :begindisplay_valid <= 1'b1;display_name <= "M_OP1";display_value <= mult_op1;end6'd2 :begindisplay_valid <= 1'b1;display_name <= "M_OP2";display_value <= mult_op2;end6'd3 :begindisplay_valid <= 1'b1;display_name <= "PRO_H";display_value <= product_r[63:32];end6'd4 :begindisplay_valid <= 1'b1;display_name <= "PRO_L";display_value <= product_r[31: 0];enddefault :begindisplay_valid <= 1'b0;display_name <= 48'd0;display_value <= 32'd0;endendcaseend
//-----{输出到触摸屏显示}end
//----------------------{调用触摸屏模块}end---------------------//
endmodule