海伦约会问题
我们要输入一个人的特征,看看这个人是否适合做海伦的约会对象,这里相比于入门版的Knn用到了文件流
点此可以看之前那个入门版KNN的代码
样本特征取三个值
1.每周获得的飞行常客里程数
2.玩视频游戏所耗时间比例
3.每周消费的冰淇淋公升数
推荐先把上面的入门版先看完再来看这个
代码如下:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import operatorfrom sklearn.preprocessing import MinMaxScalerdef file_matrix(filename):"""准备数据,从文本文件中解析数据:param filename:文件名称:return:特征值矩阵(数据集)、目标值向量"""# 打开文件with open(filename, 'r') as f:# 以行读取文件所有内容array_lines = f.readlines()# 得到文件行数lines_num = len(array_lines)# 返回的numpy矩阵,解析完成的数据:lines_num行,3列return_mat = np.zeros((lines_num, 3))# 返回的分类标签向量class_label_vector = []# 行的索引值index = 0for line in array_lines:# s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line = line.strip()# 使用s.split(str="",num=string,cout(str))将字符串根据','分隔符进行切片。list_from_line = line.split(',')# 将数据前三列提取出来,存放到return_mat的NumPy矩阵中,也就是特征矩阵return_mat[index, :] = list_from_line[0:3]# 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力class_label_vector.append(list_from_line[-1])index += 1return return_mat, class_label_vectordef show_datas(data_mat, labels):"""分析数据,数据可视化,使用Matplotlib创建散点图:param data_mat: 特征值矩阵(数据集):param labels: 目标值向量:return: None"""# 将fig画布分隔成2行2列,不共享x轴和y轴,fig画布的大小为(13,9)# 当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 10))# 设置点的颜色labels_colors = []for i in labels:if i == "1":labels_colors.append('black')if i == "2":labels_colors.append('orange')if i == "3":labels_colors.append('red')# 画出散点图,以data_mat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5axs[0][0].scatter(x=data_mat[:, 0], y=data_mat[:, 1], color=labels_colors, s=15, alpha=0.5)# 设置标题,x轴label,y轴labelaxs0_title_text = axs[0][0].set_title('每年获得的飞行常客里程数与玩视频游戏所消耗时间占比')axs0_xlabel_text = axs[0][0].set_xlabel('每年获得的飞行常客里程数')axs0_ylabel_text = axs[0][0].set_ylabel('玩视频游戏所消耗时间占')# 设置标题,x轴label,y轴label的字体大小、是否加粗、颜色plt.setp(axs0_title_text, size=12, weight='bold', color='red')plt.setp(axs0_xlabel_text, size=10, weight='bold', color='black')plt.setp(axs0_ylabel_text, size=10, weight='bold', color='black')# 画出散点图,以data_mat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[0][1].scatter(x=data_mat[:, 0], y=data_mat[:, 2], color=labels_colors, s=15, alpha=0.5)# 设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title('每年获得的飞行常客里程数与每周消费的冰激淋公升数', )axs1_xlabel_text = axs[0][1].set_xlabel('每年获得的飞行常客里程数')axs1_ylabel_text = axs[0][1].set_ylabel('每周消费的冰激淋公升数')# 设置标题,x轴label,y轴label的字体大小、是否加粗、颜色plt.setp(axs1_title_text, size=12, weight='bold', color='red')plt.setp(axs1_xlabel_text, size=10, weight='bold', color='black')plt.setp(axs1_ylabel_text, size=10, weight='bold', color='black')# 画出散点图,以data_mat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=data_mat[:, 1], y=data_mat[:, 2], color=labels_colors, s=15, alpha=0.5)# 设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title('玩视频游戏所消耗时间占比与每周消费的冰激淋公升数')axs2_xlabel_text = axs[1][0].set_xlabel('玩视频游戏所消耗时间占比')axs2_ylabel_text = axs[1][0].set_ylabel('每周消费的冰激淋公升数')# 设置标题,x轴label,y轴label的字体大小、是否加粗、颜色plt.setp(axs2_title_text, size=12, weight='bold', color='red')plt.setp(axs2_xlabel_text, size=10, weight='bold', color='black')plt.setp(axs2_ylabel_text, size=10, weight='bold', color='black')# 设置图例didnt_like = mlines.Line2D([], [], color='black', marker='.', markersize=6, label='不喜欢')small_doses = mlines.Line2D([], [], color='orange', marker='.', markersize=6, label='魅力一般')large_doses = mlines.Line2D([], [], color='red', marker='.', markersize=6, label='极具魅力')# 添加图例axs[0][0].legend(handles=[didnt_like, small_doses, large_doses])axs[0][1].legend(handles=[didnt_like, small_doses, large_doses])axs[1][0].legend(handles=[didnt_like, small_doses, large_doses])# 显示图片plt.show()'''
def auto_norm(data_set):"""准备数据,数据归一化处理:param data_set: 需要进行归一化的数据集:return: 归一化是数据集、最小值与最大值的范围、最小值"""# 获得每列数据的最小值和最大值min_vals = data_set.min(0)max_vals = data_set.max(0)# 最大值和最小值的范围ranges = max_vals - min_vals# data_set.shape 返回 data_set的矩阵行列数# 返回data_set的行数lines_num = data_set.shape[0]# np.tile(min_vals, (lines_num, 1))在行向量方向上重复min_vals共lines_num次(横向),列向量方向上重复1次(纵向)# 原始值减去最小值norm_data_set = data_set - np.tile(min_vals, (lines_num, 1))# 除以最大和最小值的差,得到归一化数据norm_data_set = norm_data_set / np.tile(ranges, (lines_num, 1))# 返回归一化数据结果,数据范围,最小值return norm_data_set, ranges, min_vals
'''def auto_norm(data_set):"""准备数据,数据归一化处理:param data_set: 需要进行归一化的数据集:return: 归一化是数据集、最小值与最大值的范围、最小值"""# 获得每列数据的最小值和最大值min_vals = data_set.min(0)max_vals = data_set.max(0)# 最大值和最小值的范围ranges = max_vals - min_vals# feature_range=(0, 1) 数据返回值在(0,1)之间# 对数据进行归一化处理mm = MinMaxScaler(feature_range=(0, 1))norm_data_set = mm.fit_transform(data_set)return norm_data_set, ranges, min_valsdef kNN(inX, data_set, labels, k):"""KNN算法分类器 :param inX: 用于分类的数据(测试集):param data_set: 用于训练的数据(训练集):param labels: 训练数据的分类标签:param k: kNN算法参数,选择距离最小的k个点:return: 分类结果"""# numpy函数shape[0]返回data_set的行数data_set_size = data_set.shape[0]# 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共data_set_size次(纵向)diff_mat = np.tile(inX, (data_set_size, 1)) - data_set# 二维特征相减后平方diff_mat_sq = diff_mat ** 2# sum()所有元素相加,sum(0)列相加,sum(1)行相加distances_sq = diff_mat_sq.sum(axis=1)# 开方,计算出距离distances = distances_sq ** 0.5# 返回distances中元素从小到大排序后的索引值sorted_dist_index = distances.argsort()# 定一个记录类别次数的字典class_count = {}for i in range(k):# 取出前k个元素的类别vote_label = labels[sorted_dist_index[i]]# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。# 计算类别次数class_count[vote_label] = class_count.get(vote_label, 0) + 1# python2中用iteritems()替换python3中的items()# key=operator.itemgetter(1)根据字典的值进行排序# key=operator.itemgetter(0)根据字典的键进行排序# reverse降序排序字典sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1), reverse=True)# 返回次数最多的类别,即所要分类的类别return sorted_class_count[0][0]def class_test(norm_mat, labels):"""测试算法,计算分类器的准确率,验证分类器:param norm_mat: 归一化处理后的特征值矩阵(数据集):param labels: 目标值向量:return:None"""# 取所有数据的百分之十作为测试集ratio = 0.10# 获得norm_mat的行数lines_num = norm_mat.shape[0]# 百分之十的测试数据的个数num_test_vecs = int(lines_num * ratio)# 分类错误计数error_count = 0.0for i in range(num_test_vecs):# 前num_test_vecs个数据作为测试集,后m-num_test_vecs个数据作为训练集classifier_result = kNN(norm_mat[i, :], norm_mat[num_test_vecs:lines_num, :], labels[num_test_vecs:lines_num], 4)print("分类结果:%s\t真实类别:%s" % (classifier_result, labels[i]))if classifier_result != labels[i]:error_count += 1.0print("错误率:%.2f%%" % (error_count / float(num_test_vecs) * 100))def class_person(norm_mat, labels):"""使用算法,构建完整可用系统:param norm_mat: 归一化处理后的特征值矩阵(数据集):param labels: 目标值向量:return: None"""# 输出结果result_list = ['不喜欢', '有些喜欢', '非常喜欢']# 三维特征用户输入ff_miles = float(input("每年获得的飞行常客里程数:"))precent_tats = float(input("玩视频游戏所耗时间百分比:"))ice_cream = float(input("每周消费的冰激淋公升数:"))# 生成NumPy数组,测试集test_array = np.array([ff_miles, precent_tats, ice_cream])# 测试集归一化test_array_nor = (test_array - min_vals) / ranges# 返回分类结果classifier_result = kNN(test_array_nor, norm_mat, labels, 3)# 打印结果print("你可能%s这个人" % (result_list[int(classifier_result) - 1]))# 主函数,测试以上各个步骤,并输出各个步骤的结果
if __name__ == '__main__':# 打开的文件名filename = "dataset.txt"# 打开并处理数据data_mat, labels = file_matrix(filename)# 数据可视化show_datas(data_mat, labels)# 训练集归一化norm_mat, ranges, min_vals = auto_norm(data_mat)# 验证分类器class_test(norm_mat, labels)# 使用分类器class_person(norm_mat, labels)
运行结果:(如果中文不能正常显示,点击查看:windows下matplotlib图例中文无法显示的解决办法)
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:3 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:3 真实类别:3
分类结果:3 真实类别:1
分类结果:3 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:2 真实类别:3
分类结果:1 真实类别:1
分类结果:2 真实类别:2
分类结果:1 真实类别:1
分类结果:3 真实类别:3
分类结果:3 真实类别:3
分类结果:2 真实类别:2
分类结果:2 真实类别:1
分类结果:1 真实类别:1
错误率:4.00%
每年获得的飞行常客里程数:1
玩视频游戏所耗时间百分比:1
每周消费的冰激淋公升数:1
你可能有些喜欢这个人
代码数据如下:
40920,8.326976,0.953952,3
14488,7.153469,1.673904,2
26052,1.441871,0.805124,1
75136,13.147394,0.428964,1
38344,1.669788,0.134296,1
72993,10.141740,1.032955,1
35948,6.830792,1.213192,3
42666,13.276369,0.543880,3
67497,8.631577,0.749278,1
35483,12.273169,1.508053,3
50242,3.723498,0.831917,1
63275,8.385879,1.669485,1
5569,4.875435,0.728658,2
51052,4.680098,0.625224,1
77372,15.299570,0.331351,1
43673,1.889461,0.191283,1
61364,7.516754,1.269164,1
69673,14.239195,0.261333,1
15669,0.000000,1.250185,2
28488,10.528555,1.304844,3
6487,3.540265,0.822483,2
37708,2.991551,0.833920,1
22620,5.297865,0.638306,2
28782,6.593803,0.187108,3
19739,2.816760,1.686209,2
36788,12.458258,0.649617,3
5741,0.000000,1.656418,2
28567,9.968648,0.731232,3
6808,1.364838,0.640103,2
41611,0.230453,1.151996,1
36661,11.865402,0.882810,3
43605,0.120460,1.352013,1
15360,8.545204,1.340429,3
63796,5.856649,0.160006,1
10743,9.665618,0.778626,2
70808,9.778763,1.084103,1
72011,4.932976,0.632026,1
5914,2.216246,0.587095,2
14851,14.305636,0.632317,3
33553,12.591889,0.686581,3
44952,3.424649,1.004504,1
17934,0.000000,0.147573,2
27738,8.533823,0.205324,3
29290,9.829528,0.238620,3
42330,11.492186,0.263499,3
36429,3.570968,0.832254,1
39623,1.771228,0.207612,1
32404,3.513921,0.991854,1
27268,4.398172,0.975024,1
5477,4.276823,1.174874,2
14254,5.946014,1.614244,2
68613,13.798970,0.724375,1
41539,10.393591,1.663724,3
7917,3.007577,0.297302,2
21331,1.031938,0.486174,2
8338,4.751212,0.064693,2
5176,3.692269,1.655113,2
18983,10.448091,0.267652,3
68837,10.585786,0.329557,1
13438,1.604501,0.069064,2
48849,3.679497,0.961466,1
12285,3.795146,0.696694,2
7826,2.531885,1.659173,2
5565,9.733340,0.977746,2
10346,6.093067,1.413798,2
1823,7.712960,1.054927,2
9744,11.470364,0.760461,3
16857,2.886529,0.934416,2
39336,10.054373,1.138351,3
65230,9.972470,0.881876,1
2463,2.335785,1.366145,2
27353,11.375155,1.528626,3
16191,0.000000,0.605619,2
12258,4.126787,0.357501,2
42377,6.319522,1.058602,1
25607,8.680527,0.086955,3
77450,14.856391,1.129823,1
58732,2.454285,0.222380,1
46426,7.292202,0.548607,3
32688,8.745137,0.857348,3
64890,8.579001,0.683048,1
8554,2.507302,0.869177,2
28861,11.415476,1.505466,3
42050,4.838540,1.680892,1
32193,10.339507,0.583646,3
64895,6.573742,1.151433,1
2355,6.539397,0.462065,2
0,2.209159,0.723567,2
70406,11.196378,0.836326,1
57399,4.229595,0.128253,1
41732,9.505944,0.005273,3
11429,8.652725,1.348934,3
75270,17.101108,0.490712,1
5459,7.871839,0.717662,2
73520,8.262131,1.361646,1
40279,9.015635,1.658555,3
21540,9.215351,0.806762,3
17694,6.375007,0.033678,2
22329,2.262014,1.022169,1
46570,5.677110,0.709469,1
42403,11.293017,0.207976,3
33654,6.590043,1.353117,1
9171,4.711960,0.194167,2
28122,8.768099,1.108041,3
34095,11.502519,0.545097,3
1774,4.682812,0.578112,2
40131,12.446578,0.300754,3
13994,12.908384,1.657722,3
77064,12.601108,0.974527,1
11210,3.929456,0.025466,2
6122,9.751503,1.182050,3
15341,3.043767,0.888168,2
44373,4.391522,0.807100,1
28454,11.695276,0.679015,3
63771,7.879742,0.154263,1
9217,5.613163,0.933632,2
69076,9.140172,0.851300,1
24489,4.258644,0.206892,1
16871,6.799831,1.221171,2
39776,8.752758,0.484418,3
5901,1.123033,1.180352,2
40987,10.833248,1.585426,3
7479,3.051618,0.026781,2
38768,5.308409,0.030683,3
4933,1.841792,0.028099,2
32311,2.261978,1.605603,1
26501,11.573696,1.061347,3
37433,8.038764,1.083910,3
23503,10.734007,0.103715,3
68607,9.661909,0.350772,1
27742,9.005850,0.548737,3
11303,0.000000,0.539131,2
0,5.757140,1.062373,2
32729,9.164656,1.624565,3
24619,1.318340,1.436243,1
42414,14.075597,0.695934,3
20210,10.107550,1.308398,3
33225,7.960293,1.219760,3
54483,6.317292,0.018209,1
18475,12.664194,0.595653,3
33926,2.906644,0.581657,1
43865,2.388241,0.913938,1
26547,6.024471,0.486215,3
44404,7.226764,1.255329,3
16674,4.183997,1.275290,2
8123,11.850211,1.096981,3
42747,11.661797,1.167935,3
56054,3.574967,0.494666,1
10933,0.000000,0.107475,2
18121,7.937657,0.904799,3
11272,3.365027,1.014085,2
16297,0.000000,0.367491,2
28168,13.860672,1.293270,3
40963,10.306714,1.211594,3
31685,7.228002,0.670670,3
55164,4.508740,1.036192,1
17595,0.366328,0.163652,2
1862,3.299444,0.575152,2
57087,0.573287,0.607915,1
63082,9.183738,0.012280,1
51213,7.842646,1.060636,3
6487,4.750964,0.558240,2
4805,11.438702,1.556334,3
30302,8.243063,1.122768,3
68680,7.949017,0.271865,1
17591,7.875477,0.227085,2
74391,9.569087,0.364856,1
37217,7.750103,0.869094,3
42814,0.000000,1.515293,1
14738,3.396030,0.633977,2
19896,11.916091,0.025294,3
14673,0.460758,0.689586,2
32011,13.087566,0.476002,3
58736,4.589016,1.672600,1
54744,8.397217,1.534103,1
29482,5.562772,1.689388,1
27698,10.905159,0.619091,3
11443,1.311441,1.169887,2
56117,10.647170,0.980141,3
39514,0.000000,0.481918,1
26627,8.503025,0.830861,3
16525,0.436880,1.395314,2
24368,6.127867,1.102179,1
22160,12.112492,0.359680,3
6030,1.264968,1.141582,2
6468,6.067568,1.327047,2
22945,8.010964,1.681648,3
18520,3.791084,0.304072,2
34914,11.773195,1.262621,3
6121,8.339588,1.443357,2
38063,2.563092,1.464013,1
23410,5.954216,0.953782,1
35073,9.288374,0.767318,3
52914,3.976796,1.043109,1
16801,8.585227,1.455708,3
9533,1.271946,0.796506,2
16721,0.000000,0.242778,2
5832,0.000000,0.089749,2
44591,11.521298,0.300860,3
10143,1.139447,0.415373,2
21609,5.699090,1.391892,2
23817,2.449378,1.322560,1
15640,0.000000,1.228380,2
8847,3.168365,0.053993,2
50939,10.428610,1.126257,3
28521,2.943070,1.446816,1
32901,10.441348,0.975283,3
42850,12.478764,1.628726,3
13499,5.856902,0.363883,2
40345,2.476420,0.096075,1
43547,1.826637,0.811457,1
70758,4.324451,0.328235,1
19780,1.376085,1.178359,2
44484,5.342462,0.394527,1
54462,11.835521,0.693301,3
20085,12.423687,1.424264,3
42291,12.161273,0.071131,3
47550,8.148360,1.649194,3
11938,1.531067,1.549756,2
40699,3.200912,0.309679,1
70908,8.862691,0.530506,1
73989,6.370551,0.369350,1
11872,2.468841,0.145060,2
48463,11.054212,0.141508,3
15987,2.037080,0.715243,2
70036,13.364030,0.549972,1
32967,10.249135,0.192735,3
63249,10.464252,1.669767,1
42795,9.424574,0.013725,3
14459,4.458902,0.268444,2
19973,0.000000,0.575976,2
5494,9.686082,1.029808,3
67902,13.649402,1.052618,1
25621,13.181148,0.273014,3
27545,3.877472,0.401600,1
58656,1.413952,0.451380,1
7327,4.248986,1.430249,2
64555,8.779183,0.845947,1
8998,4.156252,0.097109,2
11752,5.580018,0.158401,2
76319,15.040440,1.366898,1
27665,12.793870,1.307323,3
67417,3.254877,0.669546,1
21808,10.725607,0.588588,3
15326,8.256473,0.765891,2
20057,8.033892,1.618562,3
79341,10.702532,0.204792,1
15636,5.062996,1.132555,2
35602,10.772286,0.668721,3
28544,1.892354,0.837028,1
57663,1.019966,0.372320,1
78727,15.546043,0.729742,1
68255,11.638205,0.409125,1
14964,3.427886,0.975616,2
21835,11.246174,1.475586,3
7487,0.000000,0.645045,2
8700,0.000000,1.424017,2
26226,8.242553,0.279069,3
65899,8.700060,0.101807,1
6543,0.812344,0.260334,2
46556,2.448235,1.176829,1
71038,13.230078,0.616147,1
47657,0.236133,0.340840,1
19600,11.155826,0.335131,3
37422,11.029636,0.505769,3
1363,2.901181,1.646633,2
26535,3.924594,1.143120,1
47707,2.524806,1.292848,1
38055,3.527474,1.449158,1
6286,3.384281,0.889268,2
10747,0.000000,1.107592,2
44883,11.898890,0.406441,3
56823,3.529892,1.375844,1
68086,11.442677,0.696919,1
70242,10.308145,0.422722,1
11409,8.540529,0.727373,2
67671,7.156949,1.691682,1
61238,0.720675,0.847574,1
17774,0.229405,1.038603,2
53376,3.399331,0.077501,1
30930,6.157239,0.580133,1
28987,1.239698,0.719989,1
13655,6.036854,0.016548,2
7227,5.258665,0.933722,2
40409,12.393001,1.571281,3
13605,9.627613,0.935842,2
26400,11.130453,0.597610,3
13491,8.842595,0.349768,3
30232,10.690010,1.456595,3
43253,5.714718,1.674780,3
55536,3.052505,1.335804,1
8807,0.000000,0.059025,2
25783,9.945307,1.287952,3
22812,2.719723,1.142148,1
77826,11.154055,1.608486,1
38172,2.687918,0.660836,1
31676,10.037847,0.962245,3
74038,12.404762,1.112080,1
44738,10.237305,0.633422,3
17410,4.745392,0.662520,2
5688,4.639461,1.569431,2
36642,3.149310,0.639669,1
29956,13.406875,1.639194,3
60350,6.068668,0.881241,1
23758,9.477022,0.899002,3
25780,3.897620,0.560201,2
11342,5.463615,1.203677,2
36109,3.369267,1.575043,1
14292,5.234562,0.825954,2
11160,0.000000,0.722170,2
23762,12.979069,0.504068,3
39567,5.376564,0.557476,1
25647,13.527910,1.586732,3
14814,2.196889,0.784587,2
73590,10.691748,0.007509,1
35187,1.659242,0.447066,1
49459,8.369667,0.656697,3
31657,13.157197,0.143248,3
6259,8.199667,0.908508,2
33101,4.441669,0.439381,3
27107,9.846492,0.644523,3
17824,0.019540,0.977949,2
43536,8.253774,0.748700,3
67705,6.038620,1.509646,1
35283,6.091587,1.694641,3
71308,8.986820,1.225165,1
31054,11.508473,1.624296,3
52387,8.807734,0.713922,3
40328,0.000000,0.816676,1
34844,8.889202,1.665414,3
11607,3.178117,0.542752,2
64306,7.013795,0.139909,1
32721,9.605014,0.065254,3
33170,1.230540,1.331674,1
37192,10.412811,0.890803,3
13089,0.000000,0.567161,2
66491,9.699991,0.122011,1
15941,0.000000,0.061191,2
4272,4.455293,0.272135,2
48812,3.020977,1.502803,1
28818,8.099278,0.216317,3
35394,1.157764,1.603217,1
71791,10.105396,0.121067,1
40668,11.230148,0.408603,3
39580,9.070058,0.011379,3
11786,0.566460,0.478837,2
19251,0.000000,0.487300,2
56594,8.956369,1.193484,3
54495,1.523057,0.620528,1
11844,2.749006,0.169855,2
45465,9.235393,0.188350,3
31033,10.555573,0.403927,3
16633,6.956372,1.519308,2
13887,0.636281,1.273984,2
52603,3.574737,0.075163,1
72000,9.032486,1.461809,1
68497,5.958993,0.023012,1
35135,2.435300,1.211744,1
26397,10.539731,1.638248,3
7313,7.646702,0.056513,2
91273,20.919349,0.644571,1
24743,1.424726,0.838447,1
31690,6.748663,0.890223,3
15432,2.289167,0.114881,2
58394,5.548377,0.402238,1
33962,6.057227,0.432666,1
31442,10.828595,0.559955,3
31044,11.318160,0.271094,3
29938,13.265311,0.633903,3
9875,0.000000,1.496715,2
51542,6.517133,0.402519,3
11878,4.934374,1.520028,2
69241,10.151738,0.896433,1
37776,2.425781,1.559467,1
68997,9.778962,1.195498,1
67416,12.219950,0.657677,1
59225,7.394151,0.954434,1
29138,8.518535,0.742546,3
5962,2.798700,0.662632,2
10847,0.637930,0.617373,2
70527,10.750490,0.097415,1
9610,0.625382,0.140969,2
64734,10.027968,0.282787,1
25941,9.817347,0.364197,3
2763,0.646828,1.266069,2
55601,3.347111,0.914294,1
31128,11.816892,0.193798,3
5181,0.000000,1.480198,2
69982,10.945666,0.993219,1
52440,10.244706,0.280539,3
57350,2.579801,1.149172,1
57869,2.630410,0.098869,1
56557,11.746200,1.695517,3
42342,8.104232,1.326277,3
15560,12.409743,0.790295,3
34826,12.167844,1.328086,3
8569,3.198408,0.299287,2
77623,16.055513,0.541052,1
78184,7.138659,0.158481,1
7036,4.831041,0.761419,2
69616,10.082890,1.373611,1
21546,10.066867,0.788470,3
36715,8.129538,0.329913,3
20522,3.012463,1.138108,2
42349,3.720391,0.845974,1
9037,0.773493,1.148256,2
26728,10.962941,1.037324,3
587,0.177621,0.162614,2
48915,3.085853,0.967899,1
9824,8.426781,0.202558,2
4135,1.825927,1.128347,2
9666,2.185155,1.010173,2
59333,7.184595,1.261338,1
36198,0.000000,0.116525,1
34909,8.901752,1.033527,3
47516,2.451497,1.358795,1
55807,3.213631,0.432044,1
14036,3.974739,0.723929,2
42856,9.601306,0.619232,3
64007,8.363897,0.445341,1
59428,6.381484,1.365019,1
13730,0.000000,1.403914,2
41740,9.609836,1.438105,3
63546,9.904741,0.985862,1
30417,7.185807,1.489102,3
69636,5.466703,1.216571,1
64660,0.000000,0.915898,1
14883,4.575443,0.535671,2
7965,3.277076,1.010868,2
68620,10.246623,1.239634,1
8738,2.341735,1.060235,2
7544,3.201046,0.498843,2
6377,6.066013,0.120927,2
36842,8.829379,0.895657,3
81046,15.833048,1.568245,1
67736,13.516711,1.220153,1
32492,0.664284,1.116755,1
39299,6.325139,0.605109,3
77289,8.677499,0.344373,1
33835,8.188005,0.964896,3
71890,9.414263,0.384030,1
32054,9.196547,1.138253,3
38579,10.202968,0.452363,3
55984,2.119439,1.481661,1
72694,13.635078,0.858314,1
42299,0.083443,0.701669,1
26635,9.149096,1.051446,3
8579,1.933803,1.374388,2
37302,14.115544,0.676198,3
22878,8.933736,0.943352,3
4364,2.661254,0.946117,2
4985,0.988432,1.305027,2
37068,2.063741,1.125946,1
41137,2.220590,0.690754,1
67759,6.424849,0.806641,1
11831,1.156153,1.613674,2
34502,3.032720,0.601847,1
4088,3.076828,0.952089,2
15199,0.000000,0.318105,2
17309,7.750480,0.554015,3
42816,10.958135,1.482500,3
43751,10.222018,0.488678,3
58335,2.367988,0.435741,1
75039,7.686054,1.381455,1
42878,11.464879,1.481589,3
42770,11.075735,0.089726,3
8848,3.543989,0.345853,2
31340,8.123889,1.282880,3
41413,4.331769,0.754467,3
12731,0.120865,1.211961,2
22447,6.116109,0.701523,3
33564,7.474534,0.505790,3
48907,8.819454,0.649292,3
8762,6.802144,0.615284,2
46696,12.666325,0.931960,3
36851,8.636180,0.399333,3
67639,11.730991,1.289833,1
171,8.132449,0.039062,2
26674,10.296589,1.496144,3
8739,7.583906,1.005764,2
66668,9.777806,0.496377,1
68732,8.833546,0.513876,1
69995,4.907899,1.518036,1
82008,8.362736,1.285939,1
25054,9.084726,1.606312,3
33085,14.164141,0.560970,3
41379,9.080683,0.989920,3
39417,6.522767,0.038548,3
12556,3.690342,0.462281,2
39432,3.563706,0.242019,1
38010,1.065870,1.141569,1
69306,6.683796,1.456317,1
38000,1.712874,0.243945,1
46321,13.109929,1.280111,3
66293,11.327910,0.780977,1
22730,4.545711,1.233254,1
5952,3.367889,0.468104,2
72308,8.326224,0.567347,1
60338,8.978339,1.442034,1
13301,5.655826,1.582159,2
27884,8.855312,0.570684,3
11188,6.649568,0.544233,2
56796,3.966325,0.850410,1
8571,1.924045,1.664782,2
4914,6.004812,0.280369,2
10784,0.000000,0.375849,2
39296,9.923018,0.092192,3
13113,2.389084,0.119284,2
70204,13.663189,0.133251,1
46813,11.434976,0.321216,3
11697,0.358270,1.292858,2
44183,9.598873,0.223524,3
2225,6.375275,0.608040,2
29066,11.580532,0.458401,3
4245,5.319324,1.598070,2
34379,4.324031,1.603481,1
44441,2.358370,1.273204,1
2022,0.000000,1.182708,2
26866,12.824376,0.890411,3
57070,1.587247,1.456982,1
32932,8.510324,1.520683,3
51967,10.428884,1.187734,3
44432,8.346618,0.042318,3
67066,7.541444,0.809226,1
17262,2.540946,1.583286,2
79728,9.473047,0.692513,1
14259,0.352284,0.474080,2
6122,0.000000,0.589826,2
76879,12.405171,0.567201,1
11426,4.126775,0.871452,2
2493,0.034087,0.335848,2
19910,1.177634,0.075106,2
10939,0.000000,0.479996,2
17716,0.994909,0.611135,2
31390,11.053664,1.180117,3
20375,0.000000,1.679729,2
26309,2.495011,1.459589,1
33484,11.516831,0.001156,3
45944,9.213215,0.797743,3
4249,5.332865,0.109288,2
6089,0.000000,1.689771,2
7513,0.000000,1.126053,2
27862,12.640062,1.690903,3
39038,2.693142,1.317518,1
19218,3.328969,0.268271,2
62911,7.193166,1.117456,1
77758,6.615512,1.521012,1
27940,8.000567,0.835341,3
2194,4.017541,0.512104,2
37072,13.245859,0.927465,3
15585,5.970616,0.813624,2
25577,11.668719,0.886902,3
8777,4.283237,1.272728,2
29016,10.742963,0.971401,3
21910,12.326672,1.592608,3
12916,0.000000,0.344622,2
10976,0.000000,0.922846,2
79065,10.602095,0.573686,1
36759,10.861859,1.155054,3
50011,1.229094,1.638690,1
1155,0.410392,1.313401,2
71600,14.552711,0.616162,1
30817,14.178043,0.616313,3
54559,14.136260,0.362388,1
29764,0.093534,1.207194,1
69100,10.929021,0.403110,1
47324,11.432919,0.825959,3
73199,9.134527,0.586846,1
44461,5.071432,1.421420,1
45617,11.460254,1.541749,3
28221,11.620039,1.103553,3
7091,4.022079,0.207307,2
6110,3.057842,1.631262,2
79016,7.782169,0.404385,1
18289,7.981741,0.929789,3
43679,4.601363,0.268326,1
22075,2.595564,1.115375,1
23535,10.049077,0.391045,3
25301,3.265444,1.572970,2
32256,11.780282,1.511014,3
36951,3.075975,0.286284,1
31290,1.795307,0.194343,1
38953,11.106979,0.202415,3
35257,5.994413,0.800021,1
25847,9.706062,1.012182,3
32680,10.582992,0.836025,3
62018,7.038266,1.458979,1
9074,0.023771,0.015314,2
33004,12.823982,0.676371,3
44588,3.617770,0.493483,1
32565,8.346684,0.253317,3
38563,6.104317,0.099207,1
75668,16.207776,0.584973,1
9069,6.401969,1.691873,2
53395,2.298696,0.559757,1
28631,7.661515,0.055981,3
71036,6.353608,1.645301,1
71142,10.442780,0.335870,1
37653,3.834509,1.346121,1
76839,10.998587,0.584555,1
9916,2.695935,1.512111,2
38889,3.356646,0.324230,1
39075,14.677836,0.793183,3
48071,1.551934,0.130902,1
7275,2.464739,0.223502,2
41804,1.533216,1.007481,1
35665,12.473921,0.162910,3
67956,6.491596,0.032576,1
41892,10.506276,1.510747,3
38844,4.380388,0.748506,1
74197,13.670988,1.687944,1
14201,8.317599,0.390409,2
3908,0.000000,0.556245,2
2459,0.000000,0.290218,2
32027,10.095799,1.188148,3
12870,0.860695,1.482632,2
9880,1.557564,0.711278,2
72784,10.072779,0.756030,1
17521,0.000000,0.431468,2
50283,7.140817,0.883813,3
33536,11.384548,1.438307,3
9452,3.214568,1.083536,2
37457,11.720655,0.301636,3
17724,6.374475,1.475925,3
43869,5.749684,0.198875,3
264,3.871808,0.552602,2
25736,8.336309,0.636238,3
39584,9.710442,1.503735,3
31246,1.532611,1.433898,1
49567,9.785785,0.984614,3
7052,2.633627,1.097866,2
35493,9.238935,0.494701,3
10986,1.205656,1.398803,2
49508,3.124909,1.670121,1
5734,7.935489,1.585044,2
65479,12.746636,1.560352,1
77268,10.732563,0.545321,1
28490,3.977403,0.766103,1
13546,4.194426,0.450663,2
37166,9.610286,0.142912,3
16381,4.797555,1.260455,2
10848,1.615279,0.093002,2
35405,4.614771,1.027105,1
15917,0.000000,1.369726,2
6131,0.608457,0.512220,2
67432,6.558239,0.667579,1
30354,12.315116,0.197068,3
69696,7.014973,1.494616,1
33481,8.822304,1.194177,3
43075,10.086796,0.570455,3
38343,7.241614,1.661627,3
14318,4.602395,1.511768,2
5367,7.434921,0.079792,2
37894,10.467570,1.595418,3
36172,9.948127,0.003663,3
40123,2.478529,1.568987,1
10976,5.938545,0.878540,2
12705,0.000000,0.948004,2
12495,5.559181,1.357926,2
35681,9.776654,0.535966,3
46202,3.092056,0.490906,1
11505,0.000000,1.623311,2
22834,4.459495,0.538867,1
49901,8.334306,1.646600,3
71932,11.226654,0.384686,1
13279,3.904737,1.597294,2
49112,7.038205,1.211329,3
77129,9.836120,1.054340,1
37447,1.990976,0.378081,1
62397,9.005302,0.485385,1
0,1.772510,1.039873,2
15476,0.458674,0.819560,2
40625,10.003919,0.231658,3
36706,0.520807,1.476008,1
28580,10.678214,1.431837,3
25862,4.425992,1.363842,1
63488,12.035355,0.831222,1
33944,10.606732,1.253858,3
30099,1.568653,0.684264,1
13725,2.545434,0.024271,2
36768,10.264062,0.982593,3
64656,9.866276,0.685218,1
14927,0.142704,0.057455,2
43231,9.853270,1.521432,3
66087,6.596604,1.653574,1
19806,2.602287,1.321481,2
41081,10.411776,0.664168,3
10277,7.083449,0.622589,2
7014,2.080068,1.254441,2
17275,0.522844,1.622458,2
31600,10.362000,1.544827,3
59956,3.412967,1.035410,1
42181,6.796548,1.112153,3
51743,4.092035,0.075804,1
5194,2.763811,1.564325,2
30832,12.547439,1.402443,3
7976,5.708052,1.596152,2
14602,4.558025,0.375806,2
41571,11.642307,0.438553,3
55028,3.222443,0.121399,1
5837,4.736156,0.029871,2
39808,10.839526,0.836323,3
20944,4.194791,0.235483,2
22146,14.936259,0.888582,3
42169,3.310699,1.521855,1
7010,2.971931,0.034321,2
3807,9.261667,0.537807,2
29241,7.791833,1.111416,3
52696,1.480470,1.028750,1
42545,3.677287,0.244167,1
24437,2.202967,1.370399,1
16037,5.796735,0.935893,2
8493,3.063333,0.144089,2
68080,11.233094,0.492487,1
59016,1.965570,0.005697,1
11810,8.616719,0.137419,2
68630,6.609989,1.083505,1
7629,1.712639,1.086297,2
71992,10.117445,1.299319,1
13398,0.000000,1.104178,2
26241,9.824777,1.346821,3
11160,1.653089,0.980949,2
76701,18.178822,1.473671,1
32174,6.781126,0.885340,3
45043,8.206750,1.549223,3
42173,10.081853,1.376745,3
69801,6.288742,0.112799,1
41737,3.695937,1.543589,1
46979,6.726151,1.069380,3
79267,12.969999,1.568223,1
4615,2.661390,1.531933,2
32907,7.072764,1.117386,3
37444,9.123366,1.318988,3
569,3.743946,1.039546,2
8723,2.341300,0.219361,2
6024,0.541913,0.592348,2
52252,2.310828,1.436753,1
8358,6.226597,1.427316,2
26166,7.277876,0.489252,3
18471,0.000000,0.389459,2
3386,7.218221,1.098828,2
41544,8.777129,1.111464,3
10480,2.813428,0.819419,2
5894,2.268766,1.412130,2
7273,6.283627,0.571292,2
22272,7.520081,1.626868,3
31369,11.739225,0.027138,3
10708,3.746883,0.877350,2
69364,12.089835,0.521631,1
37760,12.310404,0.259339,3
13004,0.000000,0.671355,2
37885,2.728800,0.331502,1
52555,10.814342,0.607652,3
38997,12.170268,0.844205,3
69698,6.698371,0.240084,1
11783,3.632672,1.643479,2
47636,10.059991,0.892361,3
15744,1.887674,0.756162,2
69058,8.229125,0.195886,1
33057,7.817082,0.476102,3
28681,12.277230,0.076805,3
34042,10.055337,1.115778,3
29928,3.596002,1.485952,1
9734,2.755530,1.420655,2
7344,7.780991,0.513048,2
7387,0.093705,0.391834,2
33957,8.481567,0.520078,3
9936,3.865584,0.110062,2
36094,9.683709,0.779984,3
39835,10.617255,1.359970,3
64486,7.203216,1.624762,1
0,7.601414,1.215605,2
39539,1.386107,1.417070,1
66972,9.129253,0.594089,1
15029,1.363447,0.620841,2
44909,3.181399,0.359329,1
38183,13.365414,0.217011,3
37372,4.207717,1.289767,1
0,4.088395,0.870075,2
17786,3.327371,1.142505,2
39055,1.303323,1.235650,1
37045,7.999279,1.581763,3
6435,2.217488,0.864536,2
72265,7.751808,0.192451,1
28152,14.149305,1.591532,3
25931,8.765721,0.152808,3
7538,3.408996,0.184896,2
1315,1.251021,0.112340,2
12292,6.160619,1.537165,2
49248,1.034538,1.585162,1
9025,0.000000,1.034635,2
13438,2.355051,0.542603,2
69683,6.614543,0.153771,1
25374,10.245062,1.450903,3
55264,3.467074,1.231019,1
38324,7.487678,1.572293,3
69643,4.624115,1.185192,1
44058,8.995957,1.436479,3
41316,11.564476,0.007195,3
29119,3.440948,0.078331,1
51656,1.673603,0.732746,1
3030,4.719341,0.699755,2
35695,10.304798,1.576488,3
1537,2.086915,1.199312,2
9083,6.338220,1.131305,2
47744,8.254926,0.710694,3
71372,16.067108,0.974142,1
37980,1.723201,0.310488,1
42385,3.785045,0.876904,1
22687,2.557561,0.123738,1
39512,9.852220,1.095171,3
11885,3.679147,1.557205,2
4944,9.789681,0.852971,2
73230,14.958998,0.526707,1
17585,11.182148,1.288459,3
68737,7.528533,1.657487,1
13818,5.253802,1.378603,2
31662,13.946752,1.426657,3
86686,15.557263,1.430029,1
43214,12.483550,0.688513,3
24091,2.317302,1.411137,1
52544,10.069724,0.766119,3
61861,5.792231,1.615483,1
47903,4.138435,0.475994,1
37190,12.929517,0.304378,3
6013,9.378238,0.307392,2
27223,8.361362,1.643204,3
69027,7.939406,1.325042,1
78642,10.735384,0.705788,1
30254,11.592723,0.286188,3
21704,10.098356,0.704748,3
34985,9.299025,0.545337,3
31316,11.158297,0.218067,3
76368,16.143900,0.558388,1
27953,10.971700,1.221787,3
152,0.000000,0.681478,2
9146,3.178961,1.292692,2
75346,17.625350,0.339926,1
26376,1.995833,0.267826,1
35255,10.640467,0.416181,3
19198,9.628339,0.985462,3
12518,4.662664,0.495403,2
25453,5.754047,1.382742,2
12530,0.000000,0.037146,2
62230,9.334332,0.198118,1
9517,3.846162,0.619968,2
71161,10.685084,0.678179,1
1593,4.752134,0.359205,2
33794,0.697630,0.966786,1
39710,10.365836,0.505898,3
16941,0.461478,0.352865,2
69209,11.339537,1.068740,1
4446,5.420280,0.127310,2
9347,3.469955,1.619947,2
55635,8.517067,0.994858,3
65889,8.306512,0.413690,1
10753,2.628690,0.444320,2
7055,0.000000,0.802985,2
7905,0.000000,1.170397,2
53447,7.298767,1.582346,3
9194,7.331319,1.277988,2
61914,9.392269,0.151617,1
15630,5.541201,1.180596,2
79194,15.149460,0.537540,1
12268,5.515189,0.250562,2
33682,7.728898,0.920494,3
26080,11.318785,1.510979,3
19119,3.574709,1.531514,2
30902,7.350965,0.026332,3
63039,7.122363,1.630177,1
51136,1.828412,1.013702,1
35262,10.117989,1.156862,3
42776,11.309897,0.086291,3
64191,8.342034,1.388569,1
15436,0.241714,0.715577,2
14402,10.482619,1.694972,2
6341,9.289510,1.428879,2
14113,4.269419,0.134181,2
6390,0.000000,0.189456,2
8794,0.817119,0.143668,2
43432,1.508394,0.652651,1
38334,9.359918,0.052262,3
34068,10.052333,0.550423,3
30819,11.111660,0.989159,3
22239,11.265971,0.724054,3
28725,10.383830,0.254836,3
57071,3.878569,1.377983,1
72420,13.679237,0.025346,1
28294,10.526846,0.781569,3
9896,0.000000,0.924198,2
65821,4.106727,1.085669,1
7645,8.118856,1.470686,2
71289,7.796874,0.052336,1
5128,2.789669,1.093070,2
13711,6.226962,0.287251,2
22240,10.169548,1.660104,3
15092,0.000000,1.370549,2
5017,7.513353,0.137348,2
10141,8.240793,0.099735,2
35570,14.612797,1.247390,3
46893,3.562976,0.445386,1
8178,3.230482,1.331698,2
55783,3.612548,1.551911,1
1148,0.000000,0.332365,2
10062,3.931299,0.487577,2
74124,14.752342,1.155160,1
66603,10.261887,1.628085,1
11893,2.787266,1.570402,2
50908,15.112319,1.324132,3
39891,5.184553,0.223382,3
65915,3.868359,0.128078,1
65678,3.507965,0.028904,1
62996,11.019254,0.427554,1
36851,3.812387,0.655245,1
36669,11.056784,0.378725,3
38876,8.826880,1.002328,3
26878,11.173861,1.478244,3
46246,11.506465,0.421993,3
12761,7.798138,0.147917,3
35282,10.155081,1.370039,3
68306,10.645275,0.693453,1
31262,9.663200,1.521541,3
34754,10.790404,1.312679,3
13408,2.810534,0.219962,2
30365,9.825999,1.388500,3
10709,1.421316,0.677603,2
24332,11.123219,0.809107,3
45517,13.402206,0.661524,3
6178,1.212255,0.836807,2
10639,1.568446,1.297469,2
29613,3.343473,1.312266,1
22392,5.400155,0.193494,1
51126,3.818754,0.590905,1
53644,7.973845,0.307364,3
51417,9.078824,0.734876,3
24859,0.153467,0.766619,1
61732,8.325167,0.028479,1
71128,7.092089,1.216733,1
27276,5.192485,1.094409,3
30453,10.340791,1.087721,3
18670,2.077169,1.019775,2
70600,10.151966,0.993105,1
12683,0.046826,0.809614,2
81597,11.221874,1.395015,1
69959,14.497963,1.019254,1
8124,3.554508,0.533462,2
18867,3.522673,0.086725,2
80886,14.531655,0.380172,1
55895,3.027528,0.885457,1
31587,1.845967,0.488985,1
10591,10.226164,0.804403,3
70096,10.965926,1.212328,1
53151,2.129921,1.477378,1
11992,0.000000,1.606849,2
33114,9.489005,0.827814,3
7413,0.000000,1.020797,2
10583,0.000000,1.270167,2
58668,6.556676,0.055183,1
35018,9.959588,0.060020,3
70843,7.436056,1.479856,1
14011,0.404888,0.459517,2
35015,9.952942,1.650279,3
70839,15.600252,0.021935,1
3024,2.723846,0.387455,2
5526,0.513866,1.323448,2
5113,0.000000,0.861859,2
20851,7.280602,1.438470,2
40999,9.161978,1.110180,3
15823,0.991725,0.730979,2
35432,7.398380,0.684218,3
53711,12.149747,1.389088,3
64371,9.149678,0.874905,1
9289,9.666576,1.370330,2
60613,3.620110,0.287767,1
18338,5.238800,1.253646,2
22845,14.715782,1.503758,3
74676,14.445740,1.211160,1
34143,13.609528,0.364240,3
14153,3.141585,0.424280,2
9327,0.000000,0.120947,2
18991,0.454750,1.033280,2
9193,0.510310,0.016395,2
2285,3.864171,0.616349,2
9493,6.724021,0.563044,2
2371,4.289375,0.012563,2
13963,0.000000,1.437030,2
2299,3.733617,0.698269,2
5262,2.002589,1.380184,2
4659,2.502627,0.184223,2
17582,6.382129,0.876581,2
27750,8.546741,0.128706,3
9868,2.694977,0.432818,2
18333,3.951256,0.333300,2
3780,9.856183,0.329181,2
18190,2.068962,0.429927,2
11145,3.410627,0.631838,2
68846,9.974715,0.669787,1
26575,10.650102,0.866627,3
48111,9.134528,0.728045,3
43757,7.882601,1.332446,3