大数据Doris(三十八):Spark Load 导入Hive数据

news/2024/11/22 22:18:25/

文章目录

Spark Load 导入Hive数据

一、Spark Load导入Hive非分区表数据

1、在node3hive客户端,准备向Hive表加载的数据

2、启动Hive,在Hive客户端创建Hive表并加载数据

3、在Doris中创建Hive外部表

4、创建Doris表

5、创建Spark Load导入任务

6、Spark Load任务查看

7、查看Doris结果

二、Spark Load 导入Hive分区表数据

1、在node3 hive客户端,准备向Hive表加载的数据

2、创建Hive分区表并,加载数据

3、创建Doris分区表

4、创建Spark Load导入任务

5、Spark Load任务查看

6、查看Doris结果


Spark Load 导入Hive数据

一、Spark Load导入Hive非分区表数据

1、在node3hive客户端,准备向Hive表加载的数据

hive_data1.txt:

1,zs,18,100
2,ls,19,101
3,ww,20,102
4,ml,21,103
5,tq,22,104

2、启动Hive,在Hive客户端创建Hive表并加载数据

#配置Hive 服务端$HIVE_HOME/conf/hive-site.xml
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
注意:此配置项为关闭metastore版本验证,避免在doris中读取hive外表时报错。#在node1节点启动hive metastore
[root@node1 ~]# hive --service metastore &#在node3节点进入hive客户端建表并加载数据 
create table hive_tbl (id int,name string,age int,score int) row format delimited fields terminated by ',';load data local inpath '/root/hive_data1.txt' into table hive_tbl;#查看hive表中的数据
hive> select * from hive_tbl;
1	zs	18	100
2	ls	19	101
3	ww	20	102
4	ml	21	103
5	tq	22	104

3、在Doris中创建Hive外部表

使用Spark Load 将Hive非分区表中的数据导入到Doris中时,需要先在Doris中创建hive 外部表,然后通过Spark Load 加载这张外部表数据到Doris某张表中。

#Doris中创建Hive 外表
CREATE EXTERNAL TABLE example_db.hive_doris_tbl
(
id INT,
name varchar(255),
age INT,
score INT
)
ENGINE=hive
properties
(
"dfs.nameservices"="mycluster",
"dfs.ha.namenodes.mycluster"="node1,node2",
"dfs.namenode.rpc-address.mycluster.node1"="node1:8020",
"dfs.namenode.rpc-address.mycluster.node2"="node2:8020",
"dfs.client.failover.proxy.provider.mycluster" = "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider",
"database" = "default",
"table" = "hive_tbl",
"hive.metastore.uris" = "thrift://node1:9083"
);

注意:

  • 在Doris中创建Hive外表不会将数据存储到Doris中,查询hive外表数据时会读取HDFS中对应hive路径中的数据来展示,向hive表中插入数据时,doris中查询hive外表也能看到新增数据。
  • 如果Hive表中是分区表,doris创建hive表将分区列看成普通列即可。

以上hive外表结果如下:

mysql> select * from hive_doris_tbl;
+------+------+------+-------+
| id   | name | age  | score |
+------+------+------+-------+
|    1 | zs   |   18 |   100 |
|    2 | ls   |   19 |   101 |
|    3 | ww   |   20 |   102 |
|    4 | ml   |   21 |   103 |
|    5 | tq   |   22 |   104 |
+------+------+------+-------+

4、创建Doris表

#创建Doris表
create table spark_load_t2(
id int,
name varchar(255),
age int,
score double
) 
ENGINE = olap
DUPLICATE KEY(id)
DISTRIBUTED BY HASH(`id`) BUCKETS 8;

5、创建Spark Load导入任务

创建Spark Load任务后,底层Spark Load转换成Spark任务进行数据导入处理时,需要连接Hive,所以需要保证在Spark node1-node3节点客户端中SPARK_HOME/conf/目录下有hive-site.xml配置文件,以便找到Hive ,另外,连接Hive时还需要MySQL 连接依赖包,所以需要在Yarn NodeManager各个节点保证$HADOOP_HOME/share/hadoop/yarn/lib路径下有mysql-connector-java-5.1.47.jar依赖包。

#把hive客户端hive-site.xml 分发到Spark 客户端(node1-node3)节点$SPARK_HOME/conf目录下
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml  node1:/software/spark-2.3.1/conf/
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml  node2:/software/spark-2.3.1/conf/
[root@node3 ~]# cp /software/hive-3.1.3/conf/hive-site.xml  /software/spark-2.3.1/conf/#将mysql-connector-java-5.1.47.jar依赖分发到NodeManager 各个节点$HADOOP_HOME/share/hadoop/yarn/lib路径中
[root@node3 ~]# cp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar /software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node4:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node5:/software/hadoop-3.3.3/share/hadoop/yarn/lib/

编写Spark Load任务,如下:

LOAD LABEL example_db.label2
(
DATA FROM TABLE hive_doris_tbl
INTO TABLE spark_load_t2
)
WITH RESOURCE 'spark1'
(
"spark.executor.memory" = "1g",
"spark.shuffle.compress" = "true"
)
PROPERTIES
(
"timeout" = "3600"
);

6、Spark Load任务查看

登录Yarn Web UI查看对应任务执行情况:

执行命令查看Spark Load 任务执行情况:

mysql> show load order by createtime desc limit 1\G;
*************************** 1. row ***************************JobId: 37128Label: label2State: FINISHEDProgress: ETL:100%; LOAD:100%Type: SPARKEtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=0TaskInfo: cluster:spark1; timeout(s):3600; max_filter_ratio:0.0ErrorMsg: NULLCreateTime: 2023-03-10 18:13:19EtlStartTime: 2023-03-10 18:13:34EtlFinishTime: 2023-03-10 18:15:27LoadStartTime: 2023-03-10 18:15:27
LoadFinishTime: 2023-03-10 18:15:30URL: http://node1:8088/proxy/application_1678424784452_0007/JobDetails: {"Unfinished backends":{"0-0":[]},"ScannedRows":0,"TaskNumber":1,"LoadBytes":0,"All backends":{"0-0":[-1]},"FileNumber":0,"FileSi
ze":0} TransactionId: 24081ErrorTablets: {}
1 row in set (0.00 sec)

 

7、查看Doris结果

mysql> select * from spark_load_t2;
+------+------+------+-------+
| id   | name | age  | score |
+------+------+------+-------+
|    5 | tq   |   22 |   104 |
|    4 | ml   |   21 |   103 |
|    1 | zs   |   18 |   100 |
|    3 | ww   |   20 |   102 |
|    2 | ls   |   19 |   101 |
+------+------+------+-------+

二、Spark Load 导入Hive分区表数据

导入Hive分区表数据到对应的doris分区表就不能在doris中创建hive外表这种方式导入,因为hive分区列在hive外表中就是普通列,所以这里我们使用Spark Load 直接读取Hive分区表在HDFS中的路径,将数据加载到Doris分区表中。

1、在node3 hive客户端,准备向Hive表加载的数据

hive_data2.txt:

1,zs,18,100,2023-03-01
2,ls,19,200,2023-03-01
3,ww,20,300,2023-03-02
4,ml,21,400,2023-03-02
5,tq,22,500,2023-03-02

2、创建Hive分区表并,加载数据

#在node3节点进入hive客户端建表并加载数据 
create table hive_tbl2 (id int, name string,age int,score int) partitioned by (dt string) row format delimited fields terminated by ','load data local inpath '/root/hive_data2.txt' into table hive_tbl2;#查看hive表中的数据
hive> select * from hive_tbl2;
OK
1	zs	18	100	2023-03-01
2	ls	19	200	2023-03-01
3	ww	20	300	2023-03-02
4	ml	21	400	2023-03-02
5	tq	22	500	2023-03-02hive> show partitions hive_tbl2;
OK
dt=2023-03-01
dt=2023-03-02

当hive_tbl2表创建完成后,我们可以在HDFS中看到其存储路径格式如下:

 

3、创建Doris分区表

create table spark_load_t3(
dt date,
id int,
name varchar(255),
age int,
score double
) 
ENGINE = olap
DUPLICATE KEY(dt,id)
PARTITION BY RANGE(`dt`)
(
PARTITION `p1` VALUES [("2023-03-01"),("2023-03-02")),
PARTITION `p2` VALUES [("2023-03-02"),("2023-03-03"))
)
DISTRIBUTED BY HASH(`id`) BUCKETS 8;

4、创建Spark Load导入任务

创建Spark Load任务后,底层Spark Load转换成Spark任务进行数据导入处理时,需要连接Hive,所以需要保证在Spark node1-node3节点客户端中SPARK_HOME/conf/目录下有hive-site.xml配置文件,以便找到Hive ,另外,连接Hive时还需要MySQL 连接依赖包,所以需要在Yarn NodeManager各个节点保证HADOOP_HOME/share/hadoop/yarn/lib路径下有mysql-connector-java-5.1.47.jar依赖包。

#把hive客户端hive-site.xml 分发到Spark 客户端(node1-node3)节点$SPARK_HOME/conf目录下
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml  node1:/software/spark-2.3.1/conf/
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml  node2:/software/spark-2.3.1/conf/
[root@node3 ~]# cp /software/hive-3.1.3/conf/hive-site.xml  /software/spark-2.3.1/conf/#将mysql-connector-java-5.1.47.jar依赖分发到NodeManager 各个节点$HADOOP_HOME/share/hadoop/yarn/lib路径中
[root@node3 ~]# cp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar /software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node4:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node5:/software/hadoop-3.3.3/share/hadoop/yarn/lib/

编写Spark Load任务,如下:

LOAD LABEL example_db.label3
(
DATA INFILE("hdfs://node1:8020/user/hive/warehouse/hive_tbl2/dt=2023-03-02/*")
INTO TABLE spark_load_t3
COLUMNS TERMINATED BY ","
FORMAT AS "csv"
(id,name,age,score)
COLUMNS FROM PATH AS (dt)
SET
(
dt=dt,
id=id,
name=name,
age=age
)
)
WITH RESOURCE 'spark1'
(
"spark.executor.memory" = "1g",
"spark.shuffle.compress" = "true"
)
PROPERTIES
(
"timeout" = "3600"
);

注意:

  • 以上HDFS路径不支持HA模式,需要手动指定Active NameNode节点
  • 读取HDFS文件路径中的分区路径需要写出来,不能使用*代表,这与Broker Load不同。
  • 目前版本测试存在问题:当Data INFILE中指定多个路径时有时会出现只导入第一个路径数据。

5、Spark Load任务查看

执行命令查看Spark Load 任务执行情况:

mysql> show load order by createtime desc limit 1\G;   
*************************** 1. row ***************************JobId: 39432Label: label3State: FINISHEDProgress: ETL:100%; LOAD:100%Type: SPARKEtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=3TaskInfo: cluster:spark1; timeout(s):3600; max_filter_ratio:0.0ErrorMsg: NULLCreateTime: 2023-03-10 20:11:19EtlStartTime: 2023-03-10 20:11:36EtlFinishTime: 2023-03-10 20:12:21LoadStartTime: 2023-03-10 20:12:21
LoadFinishTime: 2023-03-10 20:12:22URL: http://node1:8088/proxy/application_1678443952851_0026/JobDetails: {"Unfinished backends":{"0-0":[]},"ScannedRows":3,"TaskNumber":1,"LoadBytes":0,"All backends":{"0-0":[-1]},"FileNumber":2,"FileSi
ze":60} TransactionId: 25529ErrorTablets: {}
1 row in set (0.02 sec)

6、查看Doris结果

mysql> select * from spark_load_t3;
+------------+------+------+------+-------+
| dt         | id   | name | age  | score |
+------------+------+------+------+-------+
| 2023-03-02 |    3 | ww   |   20 |   300 |
| 2023-03-02 |    4 | ml   |   21 |   400 |
| 2023-03-02 |    5 | tq   |   22 |   500 |
+------------+------+------+------+-------+

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

http://www.ppmy.cn/news/315502.html

相关文章

推荐几款好用的UI设计工具

很多刚入行的小伙伴都不太清楚做UI设计会用到哪些软件&#xff1f;苏州学码思小编今天就为大家推荐几个比较好的设计工具。一、Avocode Avocode是前端切图神器&#xff0c;它实现从视觉到代码的过渡&#xff0c;自动生成导出图片的代码。兼容&#xff1a;Sketch&#xff0c;Ph…

国内比较好的在线UI设计工具都有哪些

随着网速的不断提高和云计算技术的不断发展&#xff0c;一些软件也朝着在线使用的方向发展。在线协作办公.在线绘图.在线网络游戏等等。在线软件的好处也很明显&#xff0c;可以随时随地使用&#xff0c;甚至不需要携带电子设备。国外有比较知名的figma&#xff0c;推荐四个国内…

设计非常优秀的软件界面

文章目录 1 小白一键重装系统 1 小白一键重装系统 不得不说这个界面设计的真的是简洁美观&#xff01;

软件界面设计思想方法

15.1什么是好的软件界面 简而言之&#xff0c;好的软件界面应当是易用的和美观的。易用是交互设计的主要目标&#xff0c;美观是视觉设计的主要目标&#xff0c;交互设计和视觉设计完成后&#xff0c;最终靠编程来实现可运行的软件界面。 15.1.1易用 易用性是指用户使用软件的容…

免费的21个UI界面设计工具、资源及网站

转自: http://www.php100.com/html/webkaifa/javascript/2011/0322/7748.html 本文将介绍一些UI界面与设计使用的元素、软件和网站。内容很丰富&#xff0c;适合用户体验设计师、界面设计师、产品设计师、JS前段开发、手机产品设计以及iPad和平板电脑产品设计等使用。 Lumzy 官…

软件界面设计

对于web设计&#xff0c;软件设计&#xff0c;特别是对于像我这样的程序员 要以简单为主&#xff0c;以主功能为主&#xff0c; 加粗&#xff0c;加大字号 色彩以红&#xff0c;蓝&#xff0c;黑&#xff0c;白 背景就以白色为主 以自然&#xff0c;人性&#xff0c;顺手…

UI设计都有哪些主流设计软件?

虽说设计审美很重要&#xff0c;软件只是工具&#xff0c;但就像走楼梯和坐电梯都能到达顶楼&#xff0c;电梯的效率显然更高一样&#xff0c;好用的设计工具也是如此。下面我们就一起来了解下UI设计的主流软件&#xff0c;以及如何选择自己适合的设计软件。 Sketch 一、软件…

UI设计需要用到哪些软件工具呢?

很多零基础的非专业人士准备入行学习UI设计&#xff0c;但是对UI设计所需要使用的软件工具不是很清楚。大多数人的认知只停留在Photoshop上&#xff0c;然而作为一名优秀的UI设计师&#xff0c;需要学习掌握的工具远不止Photoshop。 下面就和重庆中软国际小编一起来看看UI设计…