文章目录
Spark Load 导入Hive数据
一、Spark Load导入Hive非分区表数据
1、在node3hive客户端,准备向Hive表加载的数据
2、启动Hive,在Hive客户端创建Hive表并加载数据
3、在Doris中创建Hive外部表
4、创建Doris表
5、创建Spark Load导入任务
6、Spark Load任务查看
7、查看Doris结果
二、Spark Load 导入Hive分区表数据
1、在node3 hive客户端,准备向Hive表加载的数据
2、创建Hive分区表并,加载数据
3、创建Doris分区表
4、创建Spark Load导入任务
5、Spark Load任务查看
6、查看Doris结果
Spark Load 导入Hive数据
一、Spark Load导入Hive非分区表数据
1、在node3hive客户端,准备向Hive表加载的数据
hive_data1.txt:
1,zs,18,100
2,ls,19,101
3,ww,20,102
4,ml,21,103
5,tq,22,104
2、启动Hive,在Hive客户端创建Hive表并加载数据
#配置Hive 服务端$HIVE_HOME/conf/hive-site.xml
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
注意:此配置项为关闭metastore版本验证,避免在doris中读取hive外表时报错。#在node1节点启动hive metastore
[root@node1 ~]# hive --service metastore &#在node3节点进入hive客户端建表并加载数据
create table hive_tbl (id int,name string,age int,score int) row format delimited fields terminated by ',';load data local inpath '/root/hive_data1.txt' into table hive_tbl;#查看hive表中的数据
hive> select * from hive_tbl;
1 zs 18 100
2 ls 19 101
3 ww 20 102
4 ml 21 103
5 tq 22 104
3、在Doris中创建Hive外部表
使用Spark Load 将Hive非分区表中的数据导入到Doris中时,需要先在Doris中创建hive 外部表,然后通过Spark Load 加载这张外部表数据到Doris某张表中。
#Doris中创建Hive 外表
CREATE EXTERNAL TABLE example_db.hive_doris_tbl
(
id INT,
name varchar(255),
age INT,
score INT
)
ENGINE=hive
properties
(
"dfs.nameservices"="mycluster",
"dfs.ha.namenodes.mycluster"="node1,node2",
"dfs.namenode.rpc-address.mycluster.node1"="node1:8020",
"dfs.namenode.rpc-address.mycluster.node2"="node2:8020",
"dfs.client.failover.proxy.provider.mycluster" = "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider",
"database" = "default",
"table" = "hive_tbl",
"hive.metastore.uris" = "thrift://node1:9083"
);
注意:
- 在Doris中创建Hive外表不会将数据存储到Doris中,查询hive外表数据时会读取HDFS中对应hive路径中的数据来展示,向hive表中插入数据时,doris中查询hive外表也能看到新增数据。
- 如果Hive表中是分区表,doris创建hive表将分区列看成普通列即可。
以上hive外表结果如下:
mysql> select * from hive_doris_tbl;
+------+------+------+-------+
| id | name | age | score |
+------+------+------+-------+
| 1 | zs | 18 | 100 |
| 2 | ls | 19 | 101 |
| 3 | ww | 20 | 102 |
| 4 | ml | 21 | 103 |
| 5 | tq | 22 | 104 |
+------+------+------+-------+
4、创建Doris表
#创建Doris表
create table spark_load_t2(
id int,
name varchar(255),
age int,
score double
)
ENGINE = olap
DUPLICATE KEY(id)
DISTRIBUTED BY HASH(`id`) BUCKETS 8;
5、创建Spark Load导入任务
创建Spark Load任务后,底层Spark Load转换成Spark任务进行数据导入处理时,需要连接Hive,所以需要保证在Spark node1-node3节点客户端中SPARK_HOME/conf/目录下有hive-site.xml配置文件,以便找到Hive ,另外,连接Hive时还需要MySQL 连接依赖包,所以需要在Yarn NodeManager各个节点保证$HADOOP_HOME/share/hadoop/yarn/lib路径下有mysql-connector-java-5.1.47.jar依赖包。
#把hive客户端hive-site.xml 分发到Spark 客户端(node1-node3)节点$SPARK_HOME/conf目录下
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml node1:/software/spark-2.3.1/conf/
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml node2:/software/spark-2.3.1/conf/
[root@node3 ~]# cp /software/hive-3.1.3/conf/hive-site.xml /software/spark-2.3.1/conf/#将mysql-connector-java-5.1.47.jar依赖分发到NodeManager 各个节点$HADOOP_HOME/share/hadoop/yarn/lib路径中
[root@node3 ~]# cp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar /software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node4:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node5:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
编写Spark Load任务,如下:
LOAD LABEL example_db.label2
(
DATA FROM TABLE hive_doris_tbl
INTO TABLE spark_load_t2
)
WITH RESOURCE 'spark1'
(
"spark.executor.memory" = "1g",
"spark.shuffle.compress" = "true"
)
PROPERTIES
(
"timeout" = "3600"
);
6、Spark Load任务查看
登录Yarn Web UI查看对应任务执行情况:
执行命令查看Spark Load 任务执行情况:
mysql> show load order by createtime desc limit 1\G;
*************************** 1. row ***************************JobId: 37128Label: label2State: FINISHEDProgress: ETL:100%; LOAD:100%Type: SPARKEtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=0TaskInfo: cluster:spark1; timeout(s):3600; max_filter_ratio:0.0ErrorMsg: NULLCreateTime: 2023-03-10 18:13:19EtlStartTime: 2023-03-10 18:13:34EtlFinishTime: 2023-03-10 18:15:27LoadStartTime: 2023-03-10 18:15:27
LoadFinishTime: 2023-03-10 18:15:30URL: http://node1:8088/proxy/application_1678424784452_0007/JobDetails: {"Unfinished backends":{"0-0":[]},"ScannedRows":0,"TaskNumber":1,"LoadBytes":0,"All backends":{"0-0":[-1]},"FileNumber":0,"FileSi
ze":0} TransactionId: 24081ErrorTablets: {}
1 row in set (0.00 sec)
7、查看Doris结果
mysql> select * from spark_load_t2;
+------+------+------+-------+
| id | name | age | score |
+------+------+------+-------+
| 5 | tq | 22 | 104 |
| 4 | ml | 21 | 103 |
| 1 | zs | 18 | 100 |
| 3 | ww | 20 | 102 |
| 2 | ls | 19 | 101 |
+------+------+------+-------+
二、Spark Load 导入Hive分区表数据
导入Hive分区表数据到对应的doris分区表就不能在doris中创建hive外表这种方式导入,因为hive分区列在hive外表中就是普通列,所以这里我们使用Spark Load 直接读取Hive分区表在HDFS中的路径,将数据加载到Doris分区表中。
1、在node3 hive客户端,准备向Hive表加载的数据
hive_data2.txt:
1,zs,18,100,2023-03-01
2,ls,19,200,2023-03-01
3,ww,20,300,2023-03-02
4,ml,21,400,2023-03-02
5,tq,22,500,2023-03-02
2、创建Hive分区表并,加载数据
#在node3节点进入hive客户端建表并加载数据
create table hive_tbl2 (id int, name string,age int,score int) partitioned by (dt string) row format delimited fields terminated by ','load data local inpath '/root/hive_data2.txt' into table hive_tbl2;#查看hive表中的数据
hive> select * from hive_tbl2;
OK
1 zs 18 100 2023-03-01
2 ls 19 200 2023-03-01
3 ww 20 300 2023-03-02
4 ml 21 400 2023-03-02
5 tq 22 500 2023-03-02hive> show partitions hive_tbl2;
OK
dt=2023-03-01
dt=2023-03-02
当hive_tbl2表创建完成后,我们可以在HDFS中看到其存储路径格式如下:
3、创建Doris分区表
create table spark_load_t3(
dt date,
id int,
name varchar(255),
age int,
score double
)
ENGINE = olap
DUPLICATE KEY(dt,id)
PARTITION BY RANGE(`dt`)
(
PARTITION `p1` VALUES [("2023-03-01"),("2023-03-02")),
PARTITION `p2` VALUES [("2023-03-02"),("2023-03-03"))
)
DISTRIBUTED BY HASH(`id`) BUCKETS 8;
4、创建Spark Load导入任务
创建Spark Load任务后,底层Spark Load转换成Spark任务进行数据导入处理时,需要连接Hive,所以需要保证在Spark node1-node3节点客户端中SPARK_HOME/conf/目录下有hive-site.xml配置文件,以便找到Hive ,另外,连接Hive时还需要MySQL 连接依赖包,所以需要在Yarn NodeManager各个节点保证HADOOP_HOME/share/hadoop/yarn/lib路径下有mysql-connector-java-5.1.47.jar依赖包。
#把hive客户端hive-site.xml 分发到Spark 客户端(node1-node3)节点$SPARK_HOME/conf目录下
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml node1:/software/spark-2.3.1/conf/
[root@node3 ~]# scp /software/hive-3.1.3/conf/hive-site.xml node2:/software/spark-2.3.1/conf/
[root@node3 ~]# cp /software/hive-3.1.3/conf/hive-site.xml /software/spark-2.3.1/conf/#将mysql-connector-java-5.1.47.jar依赖分发到NodeManager 各个节点$HADOOP_HOME/share/hadoop/yarn/lib路径中
[root@node3 ~]# cp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar /software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node4:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
[root@node3 ~]# scp /software/hive-3.1.3/lib/mysql-connector-java-5.1.47.jar node5:/software/hadoop-3.3.3/share/hadoop/yarn/lib/
编写Spark Load任务,如下:
LOAD LABEL example_db.label3
(
DATA INFILE("hdfs://node1:8020/user/hive/warehouse/hive_tbl2/dt=2023-03-02/*")
INTO TABLE spark_load_t3
COLUMNS TERMINATED BY ","
FORMAT AS "csv"
(id,name,age,score)
COLUMNS FROM PATH AS (dt)
SET
(
dt=dt,
id=id,
name=name,
age=age
)
)
WITH RESOURCE 'spark1'
(
"spark.executor.memory" = "1g",
"spark.shuffle.compress" = "true"
)
PROPERTIES
(
"timeout" = "3600"
);
注意:
- 以上HDFS路径不支持HA模式,需要手动指定Active NameNode节点
- 读取HDFS文件路径中的分区路径需要写出来,不能使用*代表,这与Broker Load不同。
- 目前版本测试存在问题:当Data INFILE中指定多个路径时有时会出现只导入第一个路径数据。
5、Spark Load任务查看
执行命令查看Spark Load 任务执行情况:
mysql> show load order by createtime desc limit 1\G;
*************************** 1. row ***************************JobId: 39432Label: label3State: FINISHEDProgress: ETL:100%; LOAD:100%Type: SPARKEtlInfo: unselected.rows=0; dpp.abnorm.ALL=0; dpp.norm.ALL=3TaskInfo: cluster:spark1; timeout(s):3600; max_filter_ratio:0.0ErrorMsg: NULLCreateTime: 2023-03-10 20:11:19EtlStartTime: 2023-03-10 20:11:36EtlFinishTime: 2023-03-10 20:12:21LoadStartTime: 2023-03-10 20:12:21
LoadFinishTime: 2023-03-10 20:12:22URL: http://node1:8088/proxy/application_1678443952851_0026/JobDetails: {"Unfinished backends":{"0-0":[]},"ScannedRows":3,"TaskNumber":1,"LoadBytes":0,"All backends":{"0-0":[-1]},"FileNumber":2,"FileSi
ze":60} TransactionId: 25529ErrorTablets: {}
1 row in set (0.02 sec)
6、查看Doris结果
mysql> select * from spark_load_t3;
+------------+------+------+------+-------+
| dt | id | name | age | score |
+------------+------+------+------+-------+
| 2023-03-02 | 3 | ww | 20 | 300 |
| 2023-03-02 | 4 | ml | 21 | 400 |
| 2023-03-02 | 5 | tq | 22 | 500 |
+------------+------+------+------+-------+
- 📢博客主页:https://lansonli.blog.csdn.net
- 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
- 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
- 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨