Easy Deep Learning——卷积层

news/2024/11/15 6:56:23/

为什么需要卷积层,深度学习中的卷积是什么?

在介绍卷积之前,先引入一个场景

假设您在草地上漫步,手里拿着一个尺子,想要测量草地上某些物体的大小,比如一片叶子。但是叶子的形状各异,并且草地非常大,您要用一款尺子轻易地测量出草地上所有叶子的大小。

显然,这很难做到,那么引入卷积的概念

于是,您想到了一种方法,即将叶子放在一个网格纸上,并把网格纸放在尺子上。您现在只需要记录纸张上每个网格的大小,然后用它们来计算叶子的大小。 

在深度学习中,直接输入原始数据是可行的,但是如果数据的尺寸很大,比如图像、音频或视频等,那么会遇到以下问题:

  1. 参数数量过多:如果直接将大型图像输入神经网络,由于图像的尺寸可能很大,因此网络的参数数量也会相应增加。这将导致更多的计算量和更多的内存需求。而卷积操作可以共享参数,通过卷积核对输入数据进行特征提取,从而减少了需要训练的参数数量,降低了计算量和内存需求。

  2. 局部相关性:对于大型图像,其中的信息通常是局部相关的。也就是说,相邻的像素通常具有相似的特征。卷积操作通过滑动窗口对输入数据进行卷积操作,可以有效地捕捉局部相关性,从而提高模型的精度。

  3. 平移不变性:图像的很多特征(如边缘、纹理等)在不同位置都是具有相似性质的。卷积操作具有平移不变性,也就是说,无论特征出现在图像的哪个位置,卷积操作都能够将其检测出来。这种平移不变性对于图像识别、物体检测等任务非常重要。

卷积是一种数学运算,用于在信号处理和图像处理中的滤波器操作中,也是卷积神经网络中重要的计算操作。卷积运算的目的是将一个函数(比如图像)与另一个函数(比如卷积核)做积分,从而得到新的函数,实现信号的去噪、特征提取、图像增强等操作。在卷积神经网络中,卷积操作是通过卷积层实现的,可以提取出图像中的特征信息,帮助神经网络更好地学习和分类。

卷积层作为深度学习中的重要组成部分,可以有效地减少参数数量,提高模型的精度,并且具有平移不变性和捕捉局部相关性的优势,因此被广泛应用于图像、音频、视频等数据的处理和分析中。

回到最初的场景中,网格纸就像是一个卷积核,它可以帮助您捕捉叶子的特征并将其转换为数字数据。同样,深度学习中的卷积也是这个原理,它将输入的数据通过卷积核的滑动操作,将每一部分的特征转化为数字数据,进而进行后续的处理和分析。

下面引入卷积对图像的数据处理为例,介绍Pytorch中卷积运行的实现。

图像的卷积计算案例——conv2d

torch.nn模块包含着torch已经准备好的层,方便使用者调用构建网络。

案例:[1] 

上图是一个二维卷积运算的示例,可以发现,卷积操作将周围几个像素的取值经过计算得到一个像素值。



使用卷积运算在图像识别、图像分割、图像重建等应用中有三个好处,即卷积稀疏连接、参数共享、等变表示,正是这些好处让卷积神经网络在图像处理算法中脱颖而出。
在卷积神经网络中,通过输人卷积核来进行卷积操作,使输入单元(图像或特征映射)和输出单元(特征映射)之间的连接是稀疏的,这样能够减少需要训练参数的数量,从而加快网络的计算速度
卷积操作的参数共享特点,主要体现在模型中同一组参数可以被多个函数或操作共同使用。在卷积神经网络中,针对不同的输人会利用同样的卷积核来获得相应的输出。这种参数共享的特点是只需要训练一个参数集,而不需对每个位置学习一个参数集合。由于卷积核尺寸可以远远小于输入尺寸,即减少需要学习的参数的数量,并且针对每个卷积层可以使用多个卷积核获取输入的特征映射,对数据(尤其是图像)具有很强的特征提取和表示能力,并且在卷积运算之后,使得卷积神经网络结构对输入的图像具有平移不变的性质。



在PyTorch中针对卷积操作的对象和使用的场景不同,有一维卷积、二维卷积三维卷积与转置卷积(可以简单理解为卷积操作的逆操作),但它们的使用方法比较相似,都可以从torch.nn模块中调用,需要调用的类如表所示。

针对一张图像,经过二维卷积后的输出会是什么样子呢?下面使用一张图像来展示经过卷积后,输出的特征映射的结果。先导入相关的包和模块,并且使用PIL包读取图像数据,使用matplotlib包来可视化图像和卷积后的结果,程序如下:

import numpy as np
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from PIL import Image# 读取图像并将其转换为灰度图
img = Image.open("/home/cbc/图片/2.png")
imgGray =np.array(img.convert("L"),dtype=np.float32) #convert("L") 转换为单通道图片# 绘制灰度图
plt.figure(figsize=(6,6))
plt.imshow(imgGray,cmap=plt.cm.gray)
plt.axis(False) #禁用坐标轴显示
plt.show()

经过上述操作之后,得到一个二维数组,在使用PyTorch进行卷积操作之前,需要将其转化为1×1×高×宽的张量。
将二维的灰度图像转换成四维的张量,维度为(1, 1, imh, imw),表示一个batch(案例数),一个通道,高为imh,宽为imw
imh,imw = imgGray.shape
# 将二维的灰度图像转换成四维的张量,维度为(1, 1, imh, imw),表示一个batch,一个通道,高为imh,宽为imw
imgGray_torch = torch.from_numpy(imgGray.reshape((1,1,imh,imw)))
print(imgGray_torch.shape)

卷积时需要将图像转化为四维来表示[batch,channel,h,w ]。在对图像进行卷积操作后,获得两个特征映射。第一个特征映射使用图像轮廓提取卷积核获取,第二个特征映射使用的卷积核为随机数,卷积核大小为5×5,对图像的边缘不使用0填充。

卷积核中心值为 24,其余为 -1,这种卷积核叫做边缘检测算子。在卷积操作中,卷积核与图像中每个像素的值进行乘积并求和,得到的结果就是该像素的卷积值。

对于边缘检测算子,它会在图像中找到像素值变化最为明显的地方,也就是图像中的边缘部分,因为边缘处的像素值变化较为剧烈。通过卷积操作,边缘部分的卷积值会比其他部分更高,从而实现提取图像轮廓的效果。

对卷积后的两个特征映射进行可视化:
# 定义卷积核大小和卷积核矩阵,其中心为24,其余为-1
kersize = 5
ker = torch.ones(kersize,kersize,dtype=torch.float32) *-1
ker[2,2] =24
ker = ker.reshape((1,1,kersize,kersize))# 将卷积核矩阵转换成张量,维度为(1, 1, kersize, kersize),表示一个batch,一个通道,卷积核的高和宽分别为kersize
ker = ker.reshape((1,1,kersize,kersize))# 定义一个2D卷积层,输入通道数为1,输出通道数为2,卷积核的大小为(kersize,kersize),不使用偏置项
conv2d = nn.Conv2d(1,2,(kersize,kersize),bias= False)# 将卷积核张量赋值给卷积层的权重,第一个通道的权重为ker
conv2d.weight.data[0] = ker# 对灰度图像进行卷积操作
imconv2dout = conv2d(imgGray_torch)# 将卷积结果的张量降维成二维数组
imconv2dout_im = imconv2dout.data.squeeze()# 打印卷积结果的形状
print("卷积后的尺寸:",imconv2dout_im.shape)# 绘制卷积结果的两个通道
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
plt.imshow(imconv2dout_im[0],cmap=plt.cm.gray)
plt.axis(False)
plt.subplot(1,2,2)
plt.imshow(imconv2dout_im[1],cmap=plt.cm.gray)
plt.axis(False)
plt.show()

可以看出,使用的边缘特征提取卷积核很好地提取出了图像的边缘信息。而右边的图像使用的卷积核为随机数,得到的卷积结果与原始图像很相似。

 

 [1]《PyTorch 深度学习入门与实战(案例视频精讲)》,孙玉林,余本国


http://www.ppmy.cn/news/31389.html

相关文章

Jedis 使用详解(官方原版)

一、配置 Maven 依赖项Jedis也通过Sonatype作为Maven Dependency 分发。要配置它&#xff0c;只需将以下 XML 代码段添加到您的 pom.xml 文件中。<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>2.…

打怪升级之字符串的分界符与字符串替换

流的字符串分界符 在C的iostream中&#xff0c;有流的字符串分界符&#xff1a; " “和”"都代表简单的分隔。 因此&#xff0c;使用流来做字符串分隔的话&#xff0c;有一个比较简单的方案就是将原定义的分隔符通过替换的方式变成流的分隔符。然后再录入流中就能…

2023年3月份的野兔在线工具系统版本更新

这个是野兔在线工具系统中文版更新&#xff0c;这次更新的功能&#xff0c;和修改的问题还是比较多的&#xff0c;也修复系统部分功能&#xff0c;应该也是目前市面上在线工具比较多的一个系统了。系统名称&#xff1a;野兔在线工具系统系统语言&#xff1a;中文版系统源码&…

每日一问-ChapGPT-20230308-关于技术与思考的问题

文章目录每日一问-ChapGPT系列起因每日一问-ChapGPT-20230308-关于技术与思考的问题matplotlib_venn 中 venn2函数调用时&#xff0c;subsets传入A list (or a tuple) containing two set objects&#xff0c;怎么理解plt.pie() 包含哪些参数&#xff0c;以及每个参数的意义mat…

【unity3D】创建TextMeshPro(TMP)中文字体(解决输入中文乱码问题)

&#x1f497; 未来的游戏开发程序媛&#xff0c;现在的努力学习菜鸡 &#x1f4a6;本专栏是我关于游戏开发的学习笔记 &#x1f236;本篇是unity的TMP中文输入显示乱码的解决方式 创建 TextMeshPro 中文字体遇到的问题描述解决方式Font Asset Creator 面板扩展中文字体文本遇到…

Pixhawk RPi CM4 Baseboard 树莓派CM4安装Ubuntu20.04 server 配置ros mavros mavsdk

文章目录硬件安装Ubuntu Server20.04下载rpiboot工具下载imager刷写系统配置USB配置WIFI开机安装桌面配置wifi配置串口安装ROS安装mavros安装MAVSDK-PythonInternet设置最后参考&#xff1a; https://docs.holybro.com/autopilot/pixhawk-baseboards/pixhawk-rpi-cm4-baseboard…

23种设计模式-命令模式(android应用场景介绍)

命令模式是一种行为设计模式&#xff0c;它允许将请求封装成一个独立的对象&#xff0c;并将请求的不同参数化。通过这种方式&#xff0c;命令模式可以在不同的请求间切换&#xff0c;或者将请求放入队列中等待执行。 在Java中&#xff0c;命令模式通常由一个抽象命令类和具体…

【C++】C++11新特性——基础特性

文章目录一、列表初始化1.1 {}初始化1.2 initializer_list类型二、类型推导2.1 auto2.2 auto注意事项2.3 decltype三、新增与改进3.1 nullptr3.2 范围for3.3 array3.4 forward_list3.5 unordered系列3.6 final与override一、列表初始化 1.1 {}初始化 C11 引入了一个新的初始化…