如何提高爬虫工作效率

news/2024/11/25 22:40:44/

单进程单线程爬取目标网站太过缓慢,这个只是针对新手来说非常友好,只适合爬取小规模项目,如果遇到大型项目就不得不考虑多线程、线程池、进程池以及协程等问题。那么我们该如何提升工作效率降低成本?

学习之前首先要对线程,进程,协程做一个简单的区分吧:

进程是资源单位,每一个进程至少要有一个线程,每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。

线程是执行单位,启动每一个程序默认都会有一个主线程。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。

协程是一种用户态的轻量级线程, 协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。

了解了进程、线程、协程之间的区别之后,我们就可以思考如何用这些东西来提高爬虫的效率呢?

提高爬虫效率的方法

多线程

要体现多线程的特点就必须得拿单线程来做一个比较,这样才能凸显不同~

单线程运行举例:

 def func():for i in range(5):print("func", i)if __name__ == '__main__':func()for i in range(5):print("main", i)

运行结果如下:

# 单线程演示案例result:
func 0
func 1
func 2
func 3
func 4
main 0
main 1
main 2
main 3
main 4

可以注意到在单线程的情况下,程序是先打印fun 0 - 4, 再打印main 0 - 4。

下面再举一个多线程的例子:

需要实例化一个Thread类 Thread(target=func()) target接收的就是任务(/函数),通过.start()方法就可以启动多线程了。

代码提供两种方式:

# 多线程(两种方法)
# 方法一:from threading import Threaddef func():for i in range(1000):print("func ", i)if __name__ == '__main__':t = Thread(target=func())  # 创建线程并给线程安排任务t.start()  # 多线程状态为可以开始工作状态,具体的执行时间由CPU决定  for i in range(1000):print("main ", i)
# two
class MyThread(Thread):def run(self): # 固定的  -> 当线程被执行的时候,被执行的就是run()for i in range(1000):print("子线程 ", i)if __name__ == '__main__':t = MyThread()# t.run()  #方法调用 --》单线程t.start()  #开启线程for i in range(1000):print("主线程 ", i)

运行结果

在这里插入图片描述

子线程和主线程有时候会同时执行,这就是多线程吧。

线程创建之后只是代表处于能够工作的状态,并不代表立即执行,具体执行的时间需要看CPU。

感觉线程执行的顺序就是杂乱无章的。

接下来分享一下多进程:

多进程

进程的使用:Process(target=func())

先举一个例子来感受一下多进程的执行顺序:

from multiprocessing import Processdef func():for i in range(1000):print("子进程 ", i)if __name__ == '__main__':p = Process(target=func())p.start()for i in range(1000):print("主进程 ", i)

运行结果:

在这里插入图片描述

从结果中可以发出,所有的子进程按照顺序执行之后。就开始打印主进程0-999。进程打印的有序也表明线程是最小的执行单位。

开启多线程打印的时候,出现的数字并不是有序的。

线程池&进程池

在python中一般使用以下方法创建线程池/进程池:

with ThreadPoolExecutor(50) as t:t.submit(fn, name=f"线程{i}")

具体代码:

# 线程池:一次性开辟一些线程,我们用户直接给线程池提交任务,线程任务的调度交给线程池来完成
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutordef fn(name):for i in range(1000):print(name,i)if __name__ == '__main__':# 创建线程池with ThreadPoolExecutor(50) as t:for i in range(100):t.submit(fn, name=f"线程{i}")# 等待线程池中的任务全部执行完毕,才继续执行(守护)print(123)

在这里插入图片描述

进程池的创建方法类似。

协程

协程:当程序遇见IO操作的时候,可以选择性的切换到其他任务上。

在微观上是一个任务一个任务的进行切换,切换条件一般就是IO操作。

在宏观上,我们能看到的其实就是多个任务一起在执行。

多任务异步操作(就像你自己一边洗脚一边看剧一样~,时间管理带师(bushi)。

线程阻塞的一些案例:

例子1:

time.sleep(30)    # 让当前线程处于阻塞状态,CPU是不为我工作的
# input()    程序也是处于阻塞状态
# requests.get(xxxxxx) 在网络请求返回数据之前,程序也是处于阻塞状态
# 一般情况下,当程序处于IO操作的时候,线程都会处于阻塞状态
# for example: 边洗脚边按摩
import asyncio
import timeasync def func():print("hahha")if __name__ == "__main__":g = func()  # 此时的函数是异步协程函数,此时函数执行得到的是一个协程对象asyncio.run(g) # 协程程序运行需要asyncio模块的支持

输出结果:

root@VM-12-2-ubuntu:~/WorkSpace# python test.py
hahha

例子2:

async def func1():print("hello,my name id hanmeimei")# time.sleep(3)  # 当程序出现了同步操作的时候,异步就中断了await asyncio.sleep(3)  # 异步操作的代码print("hello,my name id hanmeimei")async def func2():print("hello,my name id wahahha")# time.sleep(2)await asyncio.sleep(2)  # 异步操作的代码print("hello,my name id wahahha")async def func3():print("hello,my name id hhhhhhhc")# time.sleep(4)await asyncio.sleep(4)  # 异步操作的代码print("hello,my name id hhhhhhhc")if __name__ == "__main__":f1 = func1()f2 = func2()f3 = func3()task = [f1, f2, f3]t1 = time.time()asyncio.run(asyncio.wait(task))t2 = time.time()print(t2 - t1)

运行结果:

在这里插入图片描述

注意到执行await asyncio.sleep(4)后,主程序就会调用其他函数了。成功实现了异步操作。(边洗脚边按摩bushi )

下面的代码看起来更为规范~

async def func1():print("hello,my name id hanmeimei")await asyncio.sleep(3)print("hello,my name id hanmeimei")async def func2():print("hello,my name id wahahha")await asyncio.sleep(2)print("hello,my name id wahahha")async def func3():print("hello,my name id hhhhhhhc")await asyncio.sleep(4)print("hello,my name id hhhhhhhc")async def main():# 第一种写法# f1 = func1()# await f1 # 一般await挂起操作放在协程对象前面# 第二种写法(推荐)tasks = [func1(),   # py3.8以后加上asyncio.create_task()func2(),func3()]await asyncio.wait(tasks)if __name__ == "__main__":t1 = time.time()asyncio.run(main())t2 = time.time()print(t2 - t1)

再举一个模拟下载的例子吧,更加形象啦:

async def download(url):print("准备开始下载")await asyncio.sleep(2) # 网络请求print("下载完成")async def main():urls = ["http://www.baidu.com","http://www.bilibili.com","http://www.163.com"]tasks = []for url in urls:d = download(url)tasks.append(d)await asyncio.wait(tasks)if __name__ == '__main__':asyncio.run(main())
# requests.get()  同步的代码 => 异步操作aiohttpimport asyncio
import aiohttpurls = ["http://kr.shanghai-jiuxin.com/file/2020/1031/191468637cab2f0206f7d1d9b175ac81.jpg","http://i1.shaodiyejin.com/uploads/tu/201704/9999/fd3ad7b47d.jpg","http://kr.shanghai-jiuxin.com/file/2021/1022/ef72bc5f337ca82f9d36eca2372683b3.jpg"
]async def aiodownload(url):name = url.rsplit("/", 1)[1]  # 从右边切,切一次,得到[1]位置的内容 fd3ad7b47d.jpgasync with aiohttp.ClientSession() as session: # requestsasync with session.get(url) as resp: # resp = requests.get()# 请求回来之后,写入文件# 模块 aiofileswith open(name, mode="wb") as f: # 创建文件f.write(await resp.content.read())  # 读取内容是异步的,需要将await挂起, resp.text()print(name, "okk")# resp.content.read() ==> resp.text()# s = aiphttp.ClientSession <==> requests# requests.get()  .post()# s.get()  .post()# 发送请求# 保存图片内容平# 保存为文件async def main():tasks = []for url in urls:tasks.append(aiodownload(url))await asyncio.wait(tasks)if __name__ == '__main__':asyncio.run(main())

http://www.ppmy.cn/news/30832.html

相关文章

你来看看这几行代码到底创建了几个字符串?

&#x1f497;推荐阅读文章&#x1f497; &#x1f338;JavaSE系列&#x1f338;&#x1f449;1️⃣《JavaSE系列教程》&#x1f33a;MySQL系列&#x1f33a;&#x1f449;2️⃣《MySQL系列教程》&#x1f340;JavaWeb系列&#x1f340;&#x1f449;3️⃣《JavaWeb系列教程》…

如何实现在on ethernetPacket中自动回复NDP response消息

对于IPv4协议来说,如果主机想通过目标ipv4地址发送以太网数据帧给目的主机,需要在数据链路层填充目的mac地址。根据目标ipv4地址查找目标mac地址,这是ARP协议的工作原理 对于IPv6协议来说,根据目标ipv6地址查找目标mac地址,它使用的不是ARP协议,而是邻居发现NDP(Neighb…

17万字 JUC 看这一篇就够了(一) (精华)

JUC 今天我们来进入到 Java并发编程 JUC 框架的学习 &#xff0c;内容比较多&#xff0c;但希望我们都能静下心来&#xff0c;耐心的看完这篇文章 文章目录JUC进程概述对比线程创建线程ThreadRunnableCallable线程方法APIrun startsleep yieldjoininterrupt打断线程打断 park终…

旋转数组的几种做法

千淘万浪虽辛苦&#xff0c;吹尽黄沙始到金。 ——刘禹锡 第一种方法&#xff1a;遍历整个数组 题目描述&#xff1a; 一个数组A中存有N (N>0) 个整数&#xff0c;允许使用另外数组&#xff0c;将每个整数循环向右移动M(M>0)个位置。如果需要…

《Spring源码深度分析》第5章 Bean的加载

目录标题前言一、Bean加载入口与源码分析1、Bean加载的入口2、Bean加载源码二、FactoryBean的使用三、缓存中获取单例bean(待补充)前言 经过前面的分析&#xff0c;我们终于结束了对XML 配置文件的解析&#xff0c;接下来将会面临更大的挑战&#xff0c;就是对 bean 加载的探索…

AWS攻略——初识流量镜像

在实际应用场景下&#xff0c;我们可能需要建立一个测试环境&#xff0c;既能接线上流量&#xff0c;又不希望影响线上业务&#xff0c;这个时候流量镜像就派上用场。它会将一个网络接口中的流量复制到另外一个网络接口中&#xff0c;然后在后者上分发&#xff0c;而前者不受影…

【页面无响应】Web页面经常无响应前端如何定位与优化(已解決)

【写在前面】客户现场应用我们的系统时候&#xff0c;发现用着用着就出现1个页面无响应现象&#xff0c;给客户带来极其不好的体验&#xff0c;尤其是当重要工作汇报演示时&#xff0c;就给我看无响应&#xff0c;浏览器崩溃&#xff1f;这样对产品的发展无疑是致命的伤&#x…

【编程基础之Python】11、Python中的表达式

【编程基础之Python】11、Python中的表达式Python中的表达式表达式与运算符算术表达式赋值表达式比较表达式逻辑表达式位运算表达式总结Python中的表达式 在Python中&#xff0c;表达式是由操作数、运算符和函数调用等组成的语法结构&#xff0c;可以进行各种数学运算、逻辑判…