深度学习-第T2周——彩色图片分类

news/2024/11/28 18:29:49/

深度学习-第T2周——彩色图片分类

  • 深度学习-第P1周——实现mnist手写数字识别
    • 一、前言
    • 二、我的环境
    • 三、前期工作
      • 1、导入依赖项并设置GPU
      • 2、导入数据集
      • 3、归一化
      • 4、可视化图片
    • 四、构建简单的CNN网络
    • 五、编译并训练模型
      • 1、设置超参数
      • 2、编写训练函数
    • 六、预测
    • 七、模型评估

深度学习-第P1周——实现mnist手写数字识别

一、前言

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.5
  • 编译器:colab在线编译
  • 深度学习环境:Tensorflow

三、前期工作

1、导入依赖项并设置GPU

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]tf.config.experimental.set_memory_growth(gpu0, True)tf.config.set_visible_device([gpu0], "GPU")

2、导入数据集

使用dataset下载MNIST数据集,并划分训练集和测试集

使用dataloader加载数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3、归一化

数据归一化作用

  • 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
  • 加快学习算法的准确性
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

4、可视化图片

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize = (20, 10))
for i in range(20):
plt.subplot(5, 10, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap = plt.cm.binary)
plt.xlabel(class_names[train_labels[i][0]])plt.show()

在这里插入图片描述

四、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • 卷积层:通过卷积操作对输入图像进行降维和特征抽取,有卷积,填充,步幅三个部分。
    • 卷积:假设输入图片为n * n,通过k * k的卷积核,那么输出维度为(n-k+1)*(n-k+1)。
    • 填充:假设输入图片为n * n,通过k * k的卷积核, 且填充为p,那么输出维度为(n-k+2p+1)*(n-k+2p+1)
    • 步幅: 假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
  • 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
    • 与卷积层一样,假设输入图片为n * n,通过k * k的卷积核, 填充为p,且步幅为s,那么输出维度为((n-k+2p)/ s +1)*((n-k+2p)/ s +1)
#二、构建简单的CNN网络
# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取,输出维度为
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([layers.Conv2D(32, (3, 3), activation = 'relu', input_shape= (32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.Flatten(),layers.Dense(64, activation = 'relu'),layers.Dense(10)
])model.summary()
#以上为简单的tf八股模板,可以看B站的北大老师曹健的tensorflow笔记

在这里插入图片描述

五、编译并训练模型

1、设置超参数

#这里设置优化器,损失函数以及metrics
model.compile(#设置优化器为Adam优化器optimizer = 'adam',#设置损失函数为交叉熵损失函数loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),metrics = ['accuracy']
)

2、编写训练函数

history = model.fit(train_images,train_lables,epochs = 10,validation_data = (test_images, test_lables)
)

在这里插入图片描述

六、预测

plt.imshow(test_images[1])

在这里插入图片描述

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[1])])

在这里插入图片描述

七、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label = 'accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1]) #设置y轴刻度
plt.legend(loc = 'lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images, test_labels, verbose = 2)
#verbose = 0不输出日志信息, = 0 输出进度条记录, = 2 输出一行记录

在这里插入图片描述

print(test_acc)

在这里插入图片描述


http://www.ppmy.cn/news/30364.html

相关文章

react-swipeable-views轮播图实现下方的切换点控制组件

本文是react通过react-swipeable-views创建公共轮播图组件的续文 上一文 我们创建了这样的一个轮播图组件 但我们已经看到的轮播图 下面都会有小点 展示当前所在的位置 但react-swipeable-views 并没有直接提供 我们需要自己去编写这个组件 我们在components下的 rotationCh…

【C#进阶】C# 特性

序号系列文章10【C#基础】C# 正则表达式11【C#基础】C# 预处理器指令12【C#基础】C# 文件与IO文章目录前言1,特性的概念1.1 特性的属性1.2 特性的用途2,特性的定义2.1 特性参数2.2 特性目标3,预定义特性3.1 AttributeUsage3.2 Conditional3.2…

【JavaScript速成之路】JavaScript数组

📃个人主页:「小杨」的csdn博客 🔥系列专栏:【JavaScript速成之路】 🐳希望大家多多支持🥰一起进步呀! 文章目录前言1,初识数组1.1,数组1.2,创建数组1.3&…

【微信小程序】-- 页面导航 -- 导航传参(二十四)

💌 所属专栏:【微信小程序开发教程】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! &…

【基础算法】单链表的OJ练习(4) # 分割链表 # 回文链表 #

文章目录前言分割链表回文链表写在最后前言 本章的OJ练习相对前面的难度加大了&#xff0c;但是换汤不换药&#xff0c;还是围绕单链表的性质来出题的。我相信&#xff0c;能够过了前面的OJ练习&#xff0c;本章的OJ也是轻轻松松。 对于OJ练习(3)&#xff1a;-> 传送门 <…

【论文速递】WACV 2023 - 一种全卷积Transformer的医学影响分割模型

【论文速递】WACV 2023 - 一种全卷积Transformer的医学影响分割模型 【论文原文】&#xff1a;The Fully Convolutional Transformer for Medical Image Segmentation 【作者信息】&#xff1a;Athanasios Tragakis, Chaitanya Kaul,Roderick Murray-Smith,Dirk Husmeier 论…

OpenCV-Python学习(22)—— OpenCV 视频读取与保存处理(cv.VideoCapture、cv.VideoWriter)

1. 学习目标 学习 OpenCV 的视频的编码格式 cv.VideoWriter_fourcc&#xff1b;学会使用 OpenCV 的视频读取函数 cv.VideoCapture&#xff1b;学会使用 OpenCV 的视频保存函数 cv.VideoWriter。 2. cv.VideoWriter_fourcc()常见的编码参数 2.1 参数说明 参数说明cv.VideoWr…

代码还原小试牛刀(一):魔改的MD5

一、目标 2023年了&#xff0c;MD5已经是最基础的签名算法了&#xff0c;但如果你还只是对输入做了简单的MD5&#xff0c;肯定会被同行们嘲笑。加点盐&#xff08;salt&#xff09;是一种基本的提升&#xff0c;但在这个就业形势严峻的时代&#xff0c;仅仅加盐肯定不够了。 …