一、什么是最近公共祖先
LCA为最近公共祖先(Lowest Common Ancestor)的缩写。
对于一棵有根树T的两个节点u,v,最近公共祖先LCA(T,u,v)代表一个节点x。
LCA(5,6) = 2
LCA(7,12) = 3
LCA(2,1)=1
二、公共祖先的朴素解法
- 两个节点先调整到相同的深度
- 每一次两个点同时向上跳一层,当两个点相遇即为所求两点的LCA.
对于一组询问,时间复杂度为O(N)
需要深度遍历,然后构造出这么一张表
假设求LCA(D,G)
第一步:先判断D的深度为3,G的深度为1
第二步:将D根据父节点数组,往上走一步,也就是节点B,
第三步:此时深度B为2和1还是不同,需要继续往上,也就是A,此时 A,G的深度一致
第四步:判读A的父节点和G的父节点是否一致,如果一致则找到,不一致则同时上调一步,如此循环直到两者父节点首次相同。
三、递归解法
有以下图
四、代码
以下代码,构建了如下的一颗树,并分别实现了朴素法和递归法
#include<iostream>
using namespace std;
using ElemType = char;typedef struct BiTNode
{ElemType data;int nIndex;struct BiTNode* lchild;struct BiTNode* rchild;}BiTNode, * BiTree;int arrayD[100] = { -1 };
int arrayF[100] = { -1 };
void DFS(BiTNode* tree, int nd, int nf)
{if (tree){DFS(tree->lchild, nd + 1, tree->nIndex);arrayD[tree->nIndex] = nd;arrayF[tree->nIndex] = nf;DFS(tree->rchild, nd + 1, tree->nIndex);}
}int LCA1(int u, int v)
{if (arrayD[u] < arrayD[v]){swap(u, v);}if (arrayD[u] > arrayD[v] && arrayF[u] != v){while (arrayD[u] != arrayD[v]){u = arrayF[u];}while (arrayF[u] != arrayF[v]){u = arrayF[u];v = arrayF[v];}}return arrayF[u];}BiTNode* LCA2(BiTNode *pRoot,BiTNode *p,BiTNode *q)
{if (pRoot == p|| pRoot == q || pRoot == NULL){return pRoot;}BiTNode* pLeft = LCA2(pRoot->lchild, p, q);BiTNode* pRight = LCA2(pRoot->rchild, p, q);if (pLeft && pRight){return pRoot;}else if (pLeft){return pLeft;}else if (pRight){return pRight;}else{return NULL;}
}int main()
{BiTNode b1, b2, b3, b4, b5, b6, b7;memset(&b1, 0, sizeof(BiTNode));memset(&b2, 0, sizeof(BiTNode));memset(&b3, 0, sizeof(BiTNode));memset(&b4, 0, sizeof(BiTNode));memset(&b5, 0, sizeof(BiTNode));memset(&b6, 0, sizeof(BiTNode));memset(&b7, 0, sizeof(BiTNode));b1.nIndex = 0; b1.data = 'A';b2.nIndex = 1; b2.data = 'B';b3.nIndex = 2; b3.data = 'C';b4.nIndex = 3; b4.data = 'D';b5.nIndex = 4; b5.data = 'E';b6.nIndex = 5; b6.data = 'F';b7.nIndex = 6; b7.data = 'G';//构建树关系b1.lchild = &b2;b1.rchild = &b3;b2.lchild = &b4;b2.rchild = &b5;//根
b6.lchild = &b1;
b6.rchild = &b7;cout << "LCA1:\n";DFS(&b6, 0, -1);int nIndex = LCA1(b1.nIndex, b2.nIndex);if (nIndex >= 0){printf("LCA(%c,%c)= index(%d)\n", b1.data, b2.data, nIndex);}nIndex = LCA1(b5.nIndex, b7.nIndex);if (nIndex >= 0){printf("LCA(%c,%c)= index(%d)\n", b5.data, b7.data, nIndex);}//LCA2cout << "LCA2:\n";BiTNode *pLCA = LCA2(&b6, &b1, &b2);if (pLCA){printf("LCA(%c,%c)= %c\n",b1.data,b2.data, pLCA->data);}pLCA = LCA2(&b6, &b5, &b7);if (pLCA){printf("LCA(%c,%c)= %c\n", b5.data, b7.data, pLCA->data);}system("pause");
}