【论文笔记】Decoupling Representation and Classifier for Long-Tailed Recognition

news/2024/11/24 23:49:35/

这一篇其实并不是提出什么新的东西,而且是做了点类似综述的技术调用实验。省流:T-normalization最好用

摘要

现状:Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers.
做法:we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition.
结论:The findings are surprising: (1)data imbalance might not be an issue in learning high-quality representations; (2)with representations learned with the simplest instance-balanced sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier.

Classification For LONG-TAILED RECOGNITION

cRT(Classifier Re-training)
re-train the classifier with class-balanced sampling. That is, keeping the representations fixed, we ramdomly re-initialize and optimize the classifier weights W and b for a small number of epochs using class-balanced sampling.

NCM (Nearest Class Mean classifier)

  1. compute the mean feature representation for each class on the training set
  2. perform nearest neightbor search either using cosine similarity or the Euclidean distance computed on L2-normalized mean features.
  3. the cosine similarity alleviates the weight imbalance problem via its inherent normalization.

t-normalized(t-normalized classifier)
inspired: after joint training with instance-balanced sampling, the norms of the weights || wj || are correlated with the cardinality of the classes nj, while, after fine-tuning the classifiers using class-balanced sampling, the norms of the classifier weights tend to be more similar.
做法:adjusting the classifier weight norms directly through the following t-normalization procedure.

LWS(Learnable weight scaling)
Another way of interpreting t-normalization would be to think of it as a re-scaling of the magnitude for each classifier wi keeping the direction unchanged.(将T-norm 转化为一种对每个分类器权重大小的重新缩放)

Sampling Strategies

Instance-balanced sampling:the most common way of sampling data, where each training example has equal probability of being selected.

Class-balanced sampling:each class has an equal probability of being selected. One can see this as a two-stage sampling strategy, where first a class is selected uniformly from the set of classes, and then an instance from that class is subsequently uniformly sampled.

Square-root sampling
A number of variants of the previous sampling strategies have been explored.

Progressive-balanced sampling
This involves first using instance-balanced sampling for a number of epochs, and then class-balanced sampling for the last epochs.

Experiments

As illustrated in Fig.4, this yields a wider classfication boundary in feature space, allowing the classifier to have much higher accuracy on data-rich classes, but hurting data-scarce classes. t-normalized classifiers alleviate this issue to some extent by providing more balanced classifier weight magnitudes.
在这里插入图片描述
官方提供的代码链接: https://github.com/facebookresearch/classifier-balancing.


http://www.ppmy.cn/news/28708.html

相关文章

STM32——毕设智能感应窗户

智能感应窗户 一、功能设计 以STM32F103芯片最小系统作为主控,实现自动监测、阈值设定功能和手动控制功能。 1、自动监测模式下: ① 采用温湿度传感器,实现采集当前环境的温度、湿度数值。 ② 采用光敏传感器,实现判断当前的环境…

HashMap与Hashtable的这九个区别,你知道吗

Hashtable Hashtable是原始的java.util的一部分,属于一代集合类,是一个Dictionary具体的实现 。Java1.2重构的Hashtable实现了Map接口,因此,Hashtable现在集成到了集合框架中。它和HashMap类很相似。 Hashtable与HashMap的区别 …

代码实现ROSbag录制数据和回放数据(C++)

代码实现ROSbag录制数据和回放数据(C) 1.代码实现ROSbag录制数据和回放数据(C) 录制数据&#xff1a; #include <ros/ros.h> #include <rosbag/bag.h> #include <std_msgs/String.h>int main(int argc, char** argv) {// 初始化ROS节点ros::init(argc, ar…

动态规划:鸣人的影分身

在火影忍者的世界里&#xff0c;令敌人捉摸不透是非常关键的。我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。影分身是由鸣人身体的查克拉能量制造的&#xff0c;使用的查克拉越多&#xff0c;制造出的影分身越强。针对不同的作战情况&#xf…

Linux学习--常用命令

目录 cd命令&#xff1a;change directory的缩写&#xff0c;更改目录 ls命令&#xff1a;列出文件夹中的内容 pwd命令&#xff1a;print work directory 打印工作目录 su命令&#xff1a;用户切换 logout命令&#xff1a;退出当前用户 mkdir命令&#xff1a;make directo…

HIVE --- zeppelin安装

目录 把zeppelin压缩包拷贝到虚拟机里面 解压 改名 修改配置文件 编辑zeppelin-site.xml—将配置文件的ip地址和端口号进行修改 编辑 zeppelin-env.sh—添加JDK和Hadoop环境 配置环境变量 刷新环境变量 拷贝Hive文件 拷贝外部文件 启动zeppelin 启动Hadoop&Hi…

前端开发_快应用开发

目录快应用官网真机调试组件组件嵌套问题tab组件list组件web组件css 样式问题[1]选择器[2]盒模型[3]样式布局-弹性布局[4-1]样式切换 - 类名的动态切换[4-2] 样式切换 - 行内样式动态切换[5]background[6]overflow[7]border-radius[8]盒子阴影[9] 单位系统接口[1] 检查某app是否…

mysql数据库之事务

一、事务简介。 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 mysql数据库的事务默认自动提交&#xff0c;也就是说当…