支持CUDA运算的显卡算力表

news/2024/11/15 15:28:31/

GPUs supported


Supported CUDA level of GPU and card.

  • CUDA SDK 1.0 support for compute capability 1.0 – 1.1 (Tesla
  • CUDA SDK 1.1 support for compute capability 1.0 – 1.1+x (Tesla)
  • CUDA SDK 2.0 support for compute capability 1.0 – 1.1+x (Tesla)
  • CUDA SDK 2.1 – 2.3.1 support for compute capability 1.0 – 1.3 (Tesla)
  • CUDA SDK 3.0 – 3.1 support for compute capability 1.0 – 2.0 (Tesla, Fermi)
  • CUDA SDK 3.2 support for compute capability 1.0 – 2.1 (Tesla, Fermi)
  • CUDA SDK 4.0 – 4.2 support for compute capability 1.0 – 2.1+x (Tesla, Fermi, more).
  • CUDA SDK 5.0 – 5.5 support for compute capability 1.0 – 3.5 (Tesla, Fermi, Kepler).
  • CUDA SDK 6.0 support for compute capability 1.0 – 3.5 (Tesla, Fermi, Kepler).
  • CUDA SDK 6.5 support for compute capability 1.1 – 5.x (Tesla, Fermi, Kepler, Maxwell). Last version with support for compute capability 1.x (Tesla).
  • CUDA SDK 7.0 – 7.5 support for compute capability 2.0 – 5.x (Fermi, Kepler, Maxwell).
  • CUDA SDK 8.0 support for compute capability 2.0 – 6.x (Fermi, Kepler, Maxwell, Pascal). Last version with support for compute capability 2.x (Fermi).
  • CUDA SDK 9.0 – 9.2 support for compute capability 3.0 – 7.0 (Kepler, Maxwell, Pascal, Volta)
  • CUDA SDK 10.0 – 10.2 support for compute capability 3.0 – 7.5 (Kepler, Maxwell, Pascal, Volta, Turing). Last version with support for compute capability 3.0 and 3.2 (Kepler in part). 10.2 is the last official release for macOS, as support will not be available for macOS in newer releases.
  • CUDA SDK 11.0 support for compute capability 3.5 – 8.0 (Kepler (in part), Maxwell, Pascal, Volta, Turing, Ampere (in part)).
  • CUDA SDK 11.1 – 11.4 support for compute capability 3.5 – 8.6 (Kepler (in part), Maxwell, Pascal, Volta, Turing, Ampere (in part)).
  • CUDA SDK 11.5 – 11.7.1 support for compute capability 3.5 – 8.7 (Kepler (in part), Maxwell, Pascal, Volta, Turing, Ampere).
  • CUDA SDK 11.8 support for compute capability 3.5 – 9.0 (Kepler (in part), Maxwell, Pascal, Volta, Turing, Ampere, Ada Lovelace, Hopper).
  • CUDA SDK 12.0 support for compute capability 5.0 – 9.0 (Maxwell, Pascal, Volta, Turing, Ampere, Ada Lovelace, Hopper)
Compute
capability
(version)
Micro-architectureGPUsGeForce
1.0TeslaG80GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS(G80)
1.1TeslaG92, G94, G96, G98, G84, G86GeForce GTS 250, GeForce 9800 GX2, GeForce 9800 GTX, GeForce 9800 GT, GeForce 8800 GTS(G92), GeForce 8800 GT, GeForce 9600 GT, GeForce 9500 GT, GeForce 9400 GT, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8500 GT,
GeForce G110M, GeForce 9300M GS, GeForce 9200M GS, GeForce 9100M G, GeForce 8400M GT, GeForce G105M
1.2TeslaGT218, GT216, GT215GeForce GT 340*, GeForce GT 330*, GeForce GT 320*, GeForce 315*, GeForce 310*, GeForce GT 240, GeForce GT 220, GeForce 210,
GeForce GTS 360M, GeForce GTS 350M, GeForce GT 335M, GeForce GT 330M, GeForce GT 325M, GeForce GT 240M, GeForce G210M, GeForce 310M, GeForce 305M
1.3TeslaGT200, GT200bGeForce GTX 295, GTX 285, GTX 280, GeForce GTX 275, GeForce GTX 260
2.0FermiGF100, GF110GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 480, GeForce GTX 470, GeForce GTX 465,
GeForce GTX 480M
2.1FermiGF104, GF106 GF108, GF114, GF116, GF117, GF119GeForce GTX 560 Ti, GeForce GTX 550 Ti, GeForce GTX 460, GeForce GTS 450, GeForce GTS 450*, GeForce GT 640 (GDDR3), GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce GT 520, GeForce GT 440, GeForce GT 440*, GeForce GT 430, GeForce GT 430*, GeForce GT 420*,
GeForce GTX 675M, GeForce GTX 670M, GeForce GT 635M, GeForce GT 630M, GeForce GT 625M, GeForce GT 720M, GeForce GT 620M, GeForce 710M, GeForce 610M, GeForce 820M, GeForce GTX 580M, GeForce GTX 570M, GeForce GTX 560M, GeForce GT 555M, GeForce GT 550M, GeForce GT 540M, GeForce GT 525M, GeForce GT 520MX, GeForce GT 520M, GeForce GTX 485M, GeForce GTX 470M, GeForce GTX 460M, GeForce GT 445M, GeForce GT 435M, GeForce GT 420M, GeForce GT 415M, GeForce 710M, GeForce 410M
3.0KeplerGK104, GK106, GK107GeForce GTX 770, GeForce GTX 760, GeForce GT 740, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650,
GeForce GTX 880M, GeForce GTX 870M, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730M
3.5KeplerGK110, GK208GeForce GTX Titan Z, GeForce GTX Titan Black, GeForce GTX Titan, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, GeForce GT 730, GeForce GT 720, GeForce GT 710, GeForce GT 740M (64-bit, DDR3), GeForce GT 920M
5.0MaxwellGM107, GM108GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 960M, GeForce GTX 950M, GeForce 940M, GeForce 930M, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830M
5.2MaxwellGM200, GM204, GM206GeForce GTX Titan X, GeForce GTX 980 Ti, GeForce GTX 980, GeForce GTX 970, GeForce GTX 960, GeForce GTX 950, GeForce GTX 750 SE,
GeForce GTX 980M, GeForce GTX 970M, GeForce GTX 965M
6.1PascalGP102, GP104, GP106, GP107, GP108Nvidia TITAN Xp, Titan X,
GeForce GTX 1080 Ti, GTX 1080, GTX 1070 Ti, GTX 1070, GTX 1060,
GTX 1050 Ti, GTX 1050, GT 1030, GT 1010,
MX350, MX330, MX250, MX230, MX150, MX130, MX110
7.0VoltaGV100NVIDIA TITAN V
7.5TuringTU102, TU104, TU106, TU116, TU117NVIDIA TITAN RTX,
GeForce RTX 2080 Ti, RTX 2080 Super, RTX 2080, RTX 2070 Super, RTX 2070, RTX 2060 Super, RTX 2060 12GB, RTX 2060,
GeForce GTX 1660 Ti, GTX 1660 Super, GTX 1660, GTX 1650 Super, GTX 1650, MX550, MX450
8.6AmpereGA102, GA103, GA104, GA106, GA107GeForce RTX 3090 Ti, RTX 3090, RTX 3080 Ti, RTX 3080 12GB, RTX 3080, RTX 3070 Ti, RTX 3070, RTX 3060 Ti, RTX 3060, RTX 3050, RTX 3050 Ti(mobile), RTX 3050(mobile), RTX 2050(mobile), MX570
8.9

Ada

Lovelace

AD102, AD103, AD104, AD106, AD107GeForce RTX 4090, RTX 4080, RTX 4070 Ti, RTX 4070

参考:https://en.wikipedia.org/wiki/CUDA


http://www.ppmy.cn/news/284355.html

相关文章

hiho一下116周 网络流

网络流二最大流最小割定理 时间限制: 10000ms 单点时限: 1000ms 内存限制: 256MB 描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G(…

伽罗华有限域_伽罗华域(Galois Field)上的四则运算

伽罗华域(Galois Field)上的四则运算 variste Galois ,伽罗华(也译作伽瓦罗),法国数学家,群论的创立者。用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论。 本文介绍伽罗华域,以及在伽罗…

【ENVI条件下的GF6-WFV数据处理相关问题】——负值问题

嗨喽,大家好,我是学地理的小胖砸,好久不见,目前又是被数据预处理干残废的一天,最近在ENVI中处理高分6号宽幅影像(GF6-WFV)数据,在期间相关的数据预处理又出现一些问题,寻…

有限域GF(2^8).md

原文:https://blog.csdn.net/luotuo44/article/details/41645597 现在重点讲一下GF(2n),特别是GF(28),因为8刚好是一个字节的比特数。 前面说到, G F ( p ) GF(p) GF(p),p得是一个素数,才能保证集合中的所…

gf(2 4)有限域的乘法c语言实现,有限域GF(2^n)的C语言实现浅析

由于项目的需要,在网上扒了半天,没有找到域GF(2^n)的C语言实现的系统的介绍。本文试图解释偶特征有限域的实现,让读者不必像我一样浪费太多时间在搜索中。本文以GF(2^8)为例。转载请注明出处,谢谢! 甲、有限域的加法实现 简单的异或运算即可: unsigned char add(unsigned…

NVIDIA显卡、显卡驱动、可安装的CUDA版本、Pytorch

1. NVIDIA显卡: 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVIDIA推出CUDA,让显卡可以用于图像计算以外的目的。 只有G…

GF1信息整理

GF1卫星信息整理 高分1号高分1 BCD星pitch yaw roll解析经纬度坐标生成多边形kml,shp文件aircas内网上GF1号卫星命名方式,metadata里是否包含satellite roll angel(matlab程序)GDAL bigtiff注册中国资源卫星应用中心爬取数据遥感所…

window下C++怎么安装boost库

在Windows下使用NuGet安装的Boost库,需要在Visual Studio中进行配置才能使用。 以下是一些简单的步骤: 使用NuGet安装Boost库。在Visual Studio中打开NuGet包管理器控制台,执行以下命令: Install-Package boost配置Visual Stud…