[数据结构]时间复杂度与空间复杂度

news/2024/11/24 5:28:07/

[数据结构]时间复杂度与空间复杂度

如何衡量一个算法的好坏

long long Fib(int N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}  

这是一个求斐波那契数列的函数,使用递归的方法求得,虽然代码看起来很简洁,但是简洁真的就好吗?

这就是我们本节要学的时间复杂度和空间复杂度要去讨论的话题,等理解了之后再回头来看这道题。

算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此**衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。**
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的概念

时间复杂度的定义在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

一个算法执行所耗费的时间,理论上是不能算出来的,只有你把程序在计算机上跑一遍之后才能知道,但是每一个算法我们都要上机测试的话很麻烦,所以才有了时间复杂度这个概念。

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。也就是说:

找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

来看一个计算例子:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count; }printf("%d ",count); 

问这个算法时间复杂度是多少?

如果从第一行来算的话,我们一共有10行代码,也就是有限次,并且由于中间有循环,所以有代码是被执行了多次,所以时间复杂度结果是:
F(N)=N2+2N+10F(N)=N^2+2N+10 F(N)=N2+2N+10
这时候我们就要考虑一下了,既然时间复杂度是一个函数,这里的算法还算简单,如果是一些复杂的算法时间复杂度岂不是很复杂,所以我们有了大O的渐进表示法,N取不同值F(N)当然也是不同的,当N趋向于无穷大时,其实后面2N+10当然是可以忽略的,所以我们只保留函数的最高的那个量级即可。

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

大O阶方法表示:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

例如上面O(N2),如果N2前面有系数的话也是可以去掉的。

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

image-20230222201933879

当考虑一个算法时:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

当分情况考虑时,我们还有最好情况,平均情况,和最坏情况之分,我们计算**时间复杂度通常来讲我们是考虑最坏情况的**。

小试牛刀

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;	}printf("%d\n", count);
}  

答案:O(N)

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}  

答案:O(M+N)

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}  

答案:O(1)

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

答案:O(strlen(str))

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(N^2)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

答案:O(logN),logN是log以2为底N的对数。提示:要分析程序的语义,不要只数循环

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

答案:O(N),通常递归的时间复杂度通常是递归的深度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

答案:O(2^N)

只有这个比较有难度,这个递归实际上是一个二叉树的结构

image-20230223132921975

每一层的次数都是一个等比数列,求和即可得到结果。

空间复杂度

空间复杂度概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用

大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外

空间来确定。

小试牛刀

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

答案:O(1)

因为其中只创建了3个变量,也就是常数个。

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

答案:O(N)

在栈上开辟了N块空间,空间复杂度是O(N)

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

答案:O(N)

这个是有难度的,要对函数栈帧理解的比较深刻,并且知道这个递归是怎么进行的,

二叉树结构的递归调用实际上是深度优先:

image-20230223141534813

只有当最左边的调用一直到底时返回才会调用右边,当函数返回时,函数的栈帧就已经销毁了,所以再次回来时,还是同一块空间,并没有额外的空间开销,

所以最终空间复杂度为O(N)


http://www.ppmy.cn/news/27331.html

相关文章

华为OD机试真题Python实现【 喊七】真题+解题思路+代码(20222023)

喊七 题目 喊 7,是一个传统的聚会游戏, N 个人围成一圈,按顺时针从1 - 7编号, 编号为1的人从1开始喊数, 下一个人喊得数字是上一个人喊得数字+1, 但是当将要喊出数字7的倍数或者含有7的话, 不能喊出,而是要喊过。 假定N个人都没有失误。 当喊道数字k时, 可以统计每…

OSCP-课外1(http万能密码、hydra密码暴力破解http、代码审计、Win缓存区溢出)

目录 难度 主机发现&端口扫描 信息收集 万能密码 hydra密码暴力破解

别担心ChatGPT距离替代程序猿还有距离

经过多天对chat-GPT在工作的使用&#xff0c;我得出一个结论&#xff0c;它睁眼瞎说就算了&#xff0c;它还积极认错&#xff0c;绝不改正&#xff0c;错误答案极具误导性&#xff0c;啥也不说了&#xff0c;请看图。 经过N次较量它固执的认为 0011 1101 0110 0101在最高位是左…

spring boot项目中i18n和META-INF.spring下的文件的作用

目录标题一、resource下的文件二、i18n下messages_zh_CN.properties三、spring.factories文件四、org.springframework.boot.autoconfigure.AutoConfiguration.imports一、resource下的文件 org.springframework.boot.autoconfigure.AutoConfiguration.imports &#xff1b; - …

Idea修改Git账号及密码的方法

IDEA修改git账号及密码的方法&#xff1a;1、file->settings->passwords2、重启IDEA3、执行一次提交或更新当执行提交或更新之后&#xff0c;idea会自动提示输入账号、密码&#xff0c;如下&#xff1a;4、以上如果还修改不了&#xff0c;请尝试如下方式解决办法&#xf…

【LeetCode】剑指 Offer(7)

目录 写在前面&#xff1a; 题目剑指 Offer 17. 打印从1到最大的n位数 - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 题目&#xff1a;剑指 Offer 18. 删除链表的节…

java+Selenium+TestNg搭建自动化测试架构(3)实现POM(page+Object+modal)

1.Page Object是Selenium自动化测试项目开发实践的最佳设计模式之一&#xff0c;通过对界面元素的封装减少冗余代码&#xff0c;同时在后期维护中&#xff0c;若元素定位发生变化&#xff0c;只需要调整页面元素封装的代码&#xff0c;提高测试用例的可维护性。 PageObject设计…

【c语言】预处理

&#x1f680;write in front&#x1f680; &#x1f4dc;所属专栏&#xff1a;> c语言学习 &#x1f6f0;️博客主页&#xff1a;睿睿的博客主页 &#x1f6f0;️代码仓库&#xff1a;&#x1f389;VS2022_C语言仓库 &#x1f3a1;您的点赞、关注、收藏、评论&#xff0c;是…